Quiver Gauge Theory and Noncommutative Vortices(String, Duality and D-brane,NONCOMMUTATIVE GEOMETRY AND QUANTUM SPACETIME IN PHYSICS)
スポンサーリンク
概要
- 論文の詳細を見る
We construct explicit BPS and non-BPS solutions of the Yang-Mills equations on noncommutative spaces R^<2n>_θ×G/H which are manifestly G-symmetric. Given a G-representation, by twisting with a particular bundle over G/H, we obtain a G-equivariant U(k) bundle with a G-equivariant connection over R^<2n>_θ×G/H. The U(k) Donaldson-Uhlenbeck-Yau equations on these spaces reduce to vortex-type equations in a particular quiver gauge theory on R^<2n>_θ. Seiberg-Witten monopole equations are particular examples. The noncommutative BPS configurations are formulated with partial isometries, which are obtained from an equivariant Atiyah-Bott-Shapiro construction. They can be interpreted as D0-branes inside a space-filling brane-antibrane system.
- 理論物理学刊行会の論文
- 2008-03-07
著者
-
Popov Alexander
Institut Fur Theoretische Physik Leibniz Universitat Hannover:bogoliubov Laboratory Of Theoretical P
-
LECHTENFELD Olaf
Institut fur Theoretische Physik, Leibniz Universitat Hannover
-
SZABO Richard
Dept. of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University
-
Szabo Richard
Dept. Of Mathematics And Maxwell Institute For Mathematical Sciences Heriot-watt University
-
Lechtenfeld Olaf
Institut Fur Theoretische Physik Leibniz Universitat Hannover
-
POPOV Alexander
Institut fur Theoretische Physik, Leibniz Universitat Hannover:Bogoliubov Laboratory of Theoretical Physics, JINR