Pell Equation. II. Mathematical structure of the family of the solutions of the Pell equation
スポンサーリンク
概要
- 論文の詳細を見る
Mathematical structure of the families of solutions of Pell equations x^2-Dy^2=1 (called Pell-1) and x^2-Dy^2=-1 (Llep-1) are studied by using Cayley-Hamilton theorem. Besides discovery of several new recursive relations, it was found that the solutions (x_n, y_n) of Pell-1 are expressed by the Chebyshev polynomials of the first and second kinds, T_n and U_n, in terms of the smallest solutions (x_1, y_1). The solutions (t_n, u_n) of Pellep-1 which are the combination of Pell-1 and Llep-1 are expressed by using the conjugate Chebyshev polynomials. Similar results are obtained for the solutions of Pellep-4 through the modified Chebyshev polynomials and their conjugates. The solutions of Pellep-4 with several D values are found to form various interesting mathematical series of numbers, such as Fibonacci, Lucas, Pell numbers.
- お茶の水女子大学の論文
お茶の水女子大学 | 論文
- 母親の就労が青年期女子の仕事に対する価値観に及ぼす間接的な影響の検討
- 高校生のダンス授業における導入に関する一考察--社交ダンス(マンボ)の実践を通して
- ダンスコンクール参加学生の心身面のサポートに関する実践研究
- ラヴロフスキー(Leonid Lavrovsky,1905-1967)版バレエ『ロミオとジュリエットRomeo and Juliet,1940』作品研究
- 全国の任意の地点及び日時における最大熱負荷計算に関する研究(卒業論文梗概)