ボーズ粒子系における集団変数と内部変数について
スポンサーリンク
概要
- 論文の詳細を見る
集団運動の方法による取り扱いは,強く相互作用し合っているポーズ粒子系の素励起の性質を知るうえで,大変示唆に富んだ物理的描像を提供してくれる。我々は近似的にではあるが,集団変数と互いに直交する正準共役な内部変数が存在することを見い出したので報告したい。集団変数と内部変数を用いることによって系のHamiltonianを,集団運動を記述する部分と内部運動を記述する部分へ分離することが可能となり,これまで取り扱いが困難であった内部運動を平易に取り扱うことができ,例えば,ボーズ粒子系ではk_sより小さな運動量を持ったSingle-Particle excitationは起こらないこと等が導き出される。本論文では集団変数と内部変数との直交性や分離の度合等についての議論を展開する。
- 物性研究刊行会の論文
- 1979-08-20
著者
関連論文
- ボーズ多体系におけるHamiltonianの集団運動と個別運動及びResidual internal Hamiltonianへの分離
- ボーズ粒子系における集団変数と内部変数について
- 強く相互作用し合っているボーズ粒子系の集団運動の方法による記述
- 7p-B-16 液体ヘリウムにおける集団運動と内部運動
- 4a-KC-8 液体^3He中の零音波
- 6a-Q-3 液体ヘリウムIIに於ける素励起について
- A Method of Collective Description of Elmentary Excitations in Liquid He II : II. Roton Excitations
- 11a-N-4 A Method of Cellective Description of Elmentary excitaions in liqnid He II
- A Method of Collective Description of Elementary Excitations in Liquid He II. : I. Phonon Excitations