On n-dimensional projectively flat spaces admitting a group of affine motions Gr of order r>n^2-n
スポンサーリンク
概要
- 論文の詳細を見る
The necessary and sufficient conditions that an n-dimensional manifold A_n with symmetric affine connection and with vanishing projective curvature admit a group of affine motions Gr of order r>n^2-n are obtained in the form of tensor equations for n≧3, by studying the integrability conditions of the differential equations of affine motions [numerical formula] We find that we have three types of spaces. The spaces of the first type, T1, admit a transitive group Gr with r=n^2, or an intransitive group Gr with r=n^2-1. The spaces of the second type, T2, admit a transitive group Gr, r=n^2-n+1, and the spaces of the third type, T3, also admit a transitive group Gr, r=n^2-n+1. The rank of the symmetric part of the Ricci tensor is one for T1 and T2, while it is two for T3. The skew symmetric part vanishes for T1 and T3, while it is of rank two for T2. The existence of such types are proved. As, according to G. Vranceanu, a projectively not flat space does not allow a group of affine motions of order more than n^2-2n+5, we find that we can omit the words "with vanishing projective curvature" for n≧5.
- 横浜国立大学の論文
横浜国立大学 | 論文
- 足柄層郡産パラステゴドン象
- 新製品開発の国際比較 : 日伊製造企業の比較分析(笹井均先生退職記念号)
- わが国製造企業における人的資源管理 : 機械,電機,自動車製造事業所の実証分析
- わが国製造企業におけるオペレーション戦略の形成過程 : 機械,電機,自動車製造事業所の実証分析
- わが国製造企業における品質管理システム : 機械,電機,自動車製造事業所の実証分析