Stokes geometry for the quantized Henon map(6) Approaches from mathematical science and quantum information, Chaos and Nonlinear Dynamics in Quantum-Mechanical and Macroscopic Systems)
スポンサーリンク
概要
- 論文の詳細を見る
半古典論の有効性は,カオス系の量子古典対応を議論する際の前提条件である.しかしながら,プランク定数をsmall parameterとする漸近展開は,そもそもが発散級数であることからその誤差評価等が難しいばかりか,適用.意味付けにおいて様々な問題点を抱える.ここでは,エノン写像を例に,完全WKB解析の観点からカオス系の半古典論を再構築する試みの一端を紹介する.
- 2005-06-20
著者
-
Shudo Akira
Department Of Applied Physics Waseda University
-
Shudo Akira
Tokyo Metropolitan Univ. Tokyo Jpn
関連論文
- On a Random System Which Reveals Anomalous Localization of Wave Functions : Progress Letters
- A New Class of Disordered Systems : A Modified Bernoulli System with Long-Range Structural Correlation
- Stokes geometry for the quantized Henon map(6) Approaches from mathematical science and quantum information, Chaos and Nonlinear Dynamics in Quantum-Mechanical and Macroscopic Systems)
- Nambu-Hamiltonian Flows Associated with Discrete Maps (General)
- Relationship between Level Spacing Property and Matrix Element Distribution in Quantum Nonintegrable Systems : Part II. Quantal Aspects : New Trends in Chaotic Dynamics of Hamiltonian Systems
- Quantum Chaos in Mixed Phase Space and the Julia Set
- Can One Determine the Shape of a Quantum Billiard Table through the Eigenenergies and Resonances?
- A Functional Equation for Semiclassical Fredholm Determinant for Strongly Chaotic Billiards
- Quantum Chaos in Mixed Phase Space and the Julia Set
- Complex Trajectory Description for Chaotic Tunneling
- Level Spacing Distribution and Avoided Crossing in Quantum Chaos
- Boundary element method and isospectrality in quantum billiards(Perspectives of Nonequilibrium Statistical Physics-The Memory of Professor Shuichi Tasaki-)