ベイズ推論を利用して学習したニューラルネットワークによる応答曲面とその最適化問題への適用
スポンサーリンク
概要
- 論文の詳細を見る
This paper verifies the response surfaces of artificial neural networks (NN) learned by using a method based on Bayesian inference. Mackay showed that the Bayesian method due to Gull any Skilling can be applied to regularization for NN. However, generalization ability has not been verified sufficiently for the NN response surface regularized by using the Bayesian method. If the NN response surface has good generalization ability, it can be used in the optimization process of response surface methodology (RSM). NN therefore was learned by using the Bayesian method to investigate generalization ability. We tried three rules for updating the regularizing constants in an objective function minimized during NN learning. All of the update rules were derived from the Bayesian method. As a result, the response surface of NN had good generalization ability, with the exception of one update rule. The poor update rule failed to determine the regularizing constants. This tendency for the update rules was recognized regardless of response surface geometry. Afte we selected a superior update rule, the NN response surface by using the Bayesian method was applied to an optimization problem. The response surface didn't fit noises included in teacher data, and consequently, it was effectively used to reach a solution. Finally, we concluded that the NN learned by using the Bayesian method can be used as the response surface in the process of RSM.
- 2007-09-25
著者
関連論文
- 劣化環境に長時間暴露されたFRPの疲労強度
- シリコーンゲルで封止されたワイヤの振動環境下の疲労強度評価法
- 214 ガラス繊維強化ポリエステルの高温高湿下での疲労強度劣化に関する研究
- シリコーンゲルで封止されたワイヤの振動解析
- 305 電子部品用シリコーンゲルの粘弾性を考慮した振動挙動評価
- OS0747 ランダム負荷に対する疲労寿命の予測精度向上のための一手法(構造用材料の疲労挙動と寿命評価,オーガナイズドセッション)
- ノイズを含むデータから作成した応答曲面の予測精度
- ベイズ推論を利用して学習したニューラルネットワークによる応答曲面とその最適化問題への適用
- 819 ゲル中ワイヤの振動疲労評価手法の検討
- 劣化環境に長時間曝露されたFRPの疲労強度
- 周波数領域法による実働荷重下の疲労寿命評価