Physiological and mineralogical properties of arsenic-induced chlorosis in rice seedlings grown hydroponically(Plant Nutrition)
スポンサーリンク
概要
- 論文の詳細を見る
A hydroponic experiment was conducted to observe the effect of arsenic (As) on a number of physiological and mineralogical properties of rice (Oryza saliva L. cv. Akihikari) seedlings. Seedlings were treated with 0, 6.7, 13.4 and 26.8 (μmol L^<-1> As (0, 0.5, 1.0 and 2.0 mg As L^<-1>) for 14 days in a greenhouse. Shoot dry matter yield decreased by 23, 56 and 64%; however, the values for roots were 15, 35 and 42% for the 6.7, 13.4 and 26.8 μmol L^<-1> As treatments, respectively. Shoot height decreased by 11, 35 and 43%, while that of the roots decreased by 6, 11 and 33%, respectively. These results indicated that the shoot was more sensitive to As than the root in rice. Leaf number and width of leaf blade also decreased with As toxicity. Arsenic toxicity induced chlorosis symptoms in the youngest leaves of rice seedlings by decreasing chlorophyll content. Concentrations and accumulations of K, Mg, Fe, Mn, Zn and Cu decreased significantly in shoots in the 26.8 μmol L^<-1> As treatment. However, the concentration of P increased in shoots at 6.7 and 13.4 μmol L^<-1> As levels, indicating a cooperative rather than antagonistic relationship. Arsenic and Fe concentration increased in roots at higher As treatments. Arsenic translocation (%) decreased in the 13.4 and 26.8 μmol L^<-1> As treatments compared with the 6.7 μmol L^<-1> As treatment. Arsenic and Fe were mostly concentrated in the roots of rice seedlings, assuming co-existence of these two elements. Roots contained an almost 8-16-fold higher As concentration than shoots in plants in the As treatments. Considering the concentration of Mn, Zn and Cu, it was suggested that chlorosis resulted from Fe deficiency induced by As and not heavy-metal-induced Fe deficiency.
- 社団法人日本土壌肥料学会の論文
著者
-
Kawai Shigenao
Faculty Of Agriculture Iwate University
-
Kitajima Nobuyuki
Fujita Corporation
-
Kondo Toshihito
Fujita Corporation
-
Huq S.
Univ. Dhaka Dhaka Bgd
-
Shaibur Molla
The United Graduate School Of Agricultural Sciences Iwate University
-
Kawai Shigenao
Iwate Univ. Morioka
-
SUGAWARA Reiko
Fujita Corporation
-
HUQ S.
Department of Soil, Water and Environment, University of Dhaka
関連論文
- Effect of supplied phytosiderophore on ^Fe absorption and translocation in Fe-deficient barley grown hydroponically in low phosphorus media(Plant Nutrition)
- 9-35 Absorption and Translocation of Fe in Barley Plant Grown hydroponically under Fe-deficient and low Phosphorus conditions : Including the Effect of Phytosiderophore
- 9-22 Physiological and mineralogical properties of Arsenic-induced-Fe-deficient barley plant
- Concentrations of Iron and Phytosiderophores in Xylem Sap of Iron-Deficient Barley Plants
- Effect of low phosphorus and iron-deficient conditions on phytosiderophore release and mineral nutrition in barley(Plant Nutrition)
- Effects of Excess Manganese and Metal Chelators on Micronutrient Concentrations in the Xylem Sap of Iron-Deficient Barley Plants
- Rapid Incorporation of ^C of Glucose into Phytosiderophores in Iron-Deficient Barley Roots
- Diurnal Variations in Absorption and Translocation of a Ferrated Phytosiderophore in Barley as Affected by Iron Deficiency(Plant Nutrition)
- Mechanism of Potassium Alleviation of Manganese Phytotoxicity in Barley Evaluated by Short-Term Absorption of Manganese-54 and Iron-59
- Mechanism of Potassium Alleviation of Manganese Phytotoxicity in Barley Evaluated by Short-Term Absorption of Manganese-54 and Iron-59 (Plant Nutrition)
- Alleviation of Manganese Toxicity and Manganese-Induced Iron Deficiency in Barley by Additional Potassium Supply in Nutrient Solution
- Effect of Iron Deficiency on the Chemical Composition of the Xylem Sap of Barley
- Metal Micronutrients in Xylem Sap, of Iron-Deficient Barley as Affected by Plant-Borne, Microbial, and Synthetic Metal Chelators
- Arsenic-iron interaction : Effect of additional iron on arsenic-induced chlorosis in barley grown in water culture(Plant Nutrition)
- Effect of arsenic on phytosiderophores and mineral nutrition of barley seedlings grown in iron-depleted medium(Plant Nutrition)
- 14 Effect of Arsenic on the Growth of Sorghum Seedlings Grown Hydroponically
- Physiological and mineralogical properties of arsenic-induced chlorosis in rice seedlings grown hydroponically(Plant Nutrition)
- EFFECT OF HyA-INTERLAYERING ON NH_4/Ca SELECTIVITY OF EXPANDABLE LAYER SILICATES
- 22-2 Use of Sequential Extraction to Assess Distribution of Heavy Meatals in Some Cd-Contaminated and Noncontaminated Soils in Japan
- Cadmium uptake in barley affected by iron concentration of the medium: Role of phytosiderophores(Plant Nutrition)
- 6-1 Mineral Absorption of High Magnesium Containing Cultivars of Italian Ryegrass and Tall Feseue.
- 16 Cadmium tolerance and uptake by accumulator Arabidopsis halleri ssp. gemmifera grown in nutrient solution
- P9-18 Abrabidopsis halleri gemmifera as a potential candidate for hyper-accumulator of cadmium and zinc
- 9-26 Effect of phytosiderophore on iron absorption and translocation in arsenic-stressed graminaceous plants : Experiment with hydroponical plants fed with iron-59
- 9-14 Inorganic and Organic Solutes of Xylem Fluid of Arsenic Stressed Barley seedlings Grown Hydroponically
- Detection of the Regions of Phytosiderophore Release from Barley Roots