76.結び目理論におけるDowker,Thistlethwaiteのアルゴリズムに基づく1つのcomputer program
スポンサーリンク
概要
- 論文の詳細を見る
We set up a computer programming to list up sequences corresponding to knot projections using Dowker-Thistlethwaite's algorism. Take a point P and a direction on a knot projection, traverse from P via the knot projection and label the crossing point in order. Since we across a crossing point twice, each crossing point has two labels. So if the knot projection has n crossing points, we get a sequence with 2n letters, i.e. a permutation (a_1, a_2...,a_<2n>) of 1, 2,...,2n, so that i and a_i are the labels corresponding to a same crossing point. So the mapping a: {1, 2,..., 2n}→{1, 2..., 2n} defined by a(i)=a_i satisfies a^2=id. and has a parity reversing. Dowker-Thistlethwaite gave necessary and sufficient conditions for a mapping a (or a permutation (a_1, a_2,..., a_<2n>)) corresponding to a knot projection. As their conditions are fitting into a computer programming, we set up a programming to list up sequences satisfying Dowker-Thistlethwaite conditions. We use N_<88>-BASIC as the programming language and a personal computer, PC9801 (NEC).
- 東京女子大学の論文
- 1988-03-15
著者
関連論文
- 空間グラフについて(計算幾何学と離散幾何学)
- Spatial Graph Theory(Combinatorial Theory and Related Topics : Mutual Relation among Commutative Algebra,Algebraic Geometry,Representation Theory of Lie Algebras and Partially Ordered Sets)
- 76.結び目理論におけるDowker,Thistlethwaiteのアルゴリズムに基づく1つのcomputer program
- deg $_\nu P_L$($\nu$, Z) と Seifert circles の最小数(低次元トポロジーの幾何と代数)
- 結び目理論に現われるグラフについて(グラフ理論と3次元多様体)
- グラフと絡み輪に関する多項式(グラフ理論とその応用)
- LinkのHoste多項式について(コンピューターを利用した低次元トポロジーの研究)
- $\omega$の高さをもつclosed 1-complex II(Theory of Spines of 3-manifolds)
- $\omega$の高さをもつclosed 1-complex(低次元多様体の幾何構造と位相構造)
- 4次元多様体のHeegaard分解について(多様体とFake Surfaces)
- ノットセオリ-の夢 (コンピュ-タとトポロジ-)
- $\omega$-contractible closed 1-complex
- Standard Representation Curves of $\pi_1(M^3)$ (低次元多様体の構造と分類について)
- Standard Representation Curve of $\pi_1(M^3)$ (3次元多様体の構造と位置の問題)
- 無限群を基本群としてもつ3次元多様体の位相同形問題について (多様体に於ける低次元トポロジーの問題)
- Almost Sufficiently Large Manifold of Type II (曲面の位置の理論と関連する話題)
- Almost Homeomorphic 3-Manifolds (3次元4次元における幾何学的トポロジーの研究)
- ManifoldのBall Coveringについて (多様体の低余次元位置問題について)
- Cartesian Product of a Homotopy 4-Sphere with $E^1$ (Knotting problemについて)
- Stable Homeomorphismについて (Combinatorial Topology)