円筒殻の振動の一解法についてFluggeの方程式にもとづくラグランジュアン
スポンサーリンク
概要
- 論文の詳細を見る
A study of vibrations of cylindrical shells by means of the Lagrangian-minimizing-method has been made by Professor Shin Takahashi. The Lagrangian employed in his method of analysis has been found within the scope of ”Love's first approximation” based on two types of approximations; a) The straight fibres of a shell which are perpendicular to the middle surface before deformation remain so after deformation and do not change their length, and the normal stresses in the thickness direction of the shell may be neglected in comparison with the other stresses. b) The ratio of thickness to radii of curvatures is negligibly small compared to unity. Flugge has obtained stress strain relations by retaining assumption a) but without the use of assumption b). The present paper deals with the Lagrangian corresponding to the fundamental equations called ”Flugge's equation” derived from this system of stress strain relations. First, we find the strain energy of a cylindrical shell and the Lagrangian represented in terms of dispalcements. Secondly, we get the Euler equations coinciding with the Flugge equations and the boundary conditions by means of calculus of variations. Lastly, we have the solutions of this system of equations specified by the boundary values and the Lagrangian given by introducing them into itself which yields the frequency equations being minimized with respect to unknown boundary values.
- 山形大学の論文
- 1969-03-20
著者
関連論文
- はしご形わく組の振動
- 点支持円板の振動の一解法
- 円板と円筒との結合系の振動 : 第2報, 中間に円板を結合した場合
- 円板と円筒との結合系の振動 : 第2報, 中間に円板を結合した場合
- 円板と円筒との結合系の振動 : 第1報,端に円板のついた場合
- 二本の脚をもつ円板の振動
- 円板の振動に対する変分法の一応用
- 曲がり部に集中荷重をもつU形わく組の振動
- H形棒わく組の振動
- 同心円弧状スリットを有する円板の振動
- 一対辺支持・他対辺に混合境界を有する長方形板の振動および座屈
- 複合円筒の振動について ( 変位、曲げモーメント, せん断力 )
- せっ頭円すいかくの振動
- 円板のついた円筒の軸対称振動
- 円筒と円筒の結合系の振動
- 円筒と円筒の結合系の振動
- 円筒の振動 : 固定-自由
- 円筒殻の振動の一解法についてFluggeの方程式にもとづくラグランジュアン
- 回転円板の振動
- わく組の振動を近似する系について
- 接続系の自由振動(主として高橋の方法と固有関数について)