Using Hybrid HMM/BN Acoustic Models : Design and Implementation Issues(Speech Recognition, <Special Section> Statistical Modeling for Speech Processing)
スポンサーリンク
概要
- 論文の詳細を見る
In recent years, the number of studies investigating new directions in speech modeling that goes beyond the conventional HMM has increased considerably. One promising approach is to use Bayesian Networks (BN) as speech models. Full recognition systems based on Dynamic BN as well as acoustic models using BN have been proposed lately. Our group at ATR has been developing a hybrid HMM/BN model, which is an HMM where the state probability distribution is modeled by a BN, instead of commonly used mixtures of Gaussian functions. In this paper, we describe how to use the hybrid HMM/BN acoustic models, especially emphasizing some design and implementation issues. The most essential part of HMM/BN model building is the choice of the state BN topology. As it is manually chosen, there are some factors that should be considered in this process. They include, but are not limited to, the type of data, the task and the available additional information. When context-dependent models are used, the state-level structure can be obtained by traditional methods. The HMM/BN parameter learning is based on the Viterbi training paradigm and consists of two alternating steps-BN training and HMM transition updates. For recognition, in some cases, BN inference is computationally equivalent to a mixture of Gaussians, which allows HMM/BN model to be used in existing decoders without any modification. We present two examples of HMM/BN model applications in speech recognition systems. Evaluations under various conditions and for different tasks showed that the HMM/BN model gives consistently better performance than the conventional HMM.
- 社団法人電子情報通信学会の論文
- 2006-03-01
著者
-
Markov Konstantin
The Atr Spoken Language Communication Research Labs.
-
NAKAMURA Satoshi
the ATR Spoken Language Communication Research Labs.
-
Nakamura Satoshi
The Atr Spoken Language Communication Research Laboratories
関連論文
- Using Hybrid HMM/BN Acoustic Models : Design and Implementation Issues(Speech Recognition, Statistical Modeling for Speech Processing)
- A Non-stationary Noise Suppression Method Based on Particle Filtering and Polyak Averaging(Speech Recognition, Statistical Modeling for Speech Processing)
- Maximum Likelihood Successive State Splitting Algorithm for Tied-Mixture HMnet