弾性論の初期境界値問題における解の連続依存性について
スポンサーリンク
概要
- 論文の詳細を見る
Let G be a bounded domain in R^p, G^^- its closure, and we assume that the boundary ∂G of G^^- is piceewise smooth. Let u be a displacement vector with components u_j, τ(u) a stress tensor with components τ_<jk>(u), n the unit outward normal on ∂G, 0<p<+∞ a density of elastic media, 0<λ<+∞ and 0<μ<+∞ Lame's coefficients, and F denotes a body force with component F_j. We assume λ, μ∈C^1(G)∩C(G^^-), ρ∈C(G^^-), F_j∈C(Ω^^-_T), where Ω_T=G×(0,T), 0<T<+∞. Consider the equation [numerical formula] defined in Ω_T together with the initial conditions [numerical formula] and one of the following boundary conditions on ∂G: a) [numerical formula] b) [numerical formula] Here α is a constant that α=0 or α=1, x is a space variable in G^^-, t is a time variable in [0,T]. When we adopt the boundary condition (***)-a), we denote u_0, u_1∈C^2(G)∩C^1(G^^-). Similarly, for the case (***)-b), we denote u_0, u_1∈C^2(G)∩C^1(G∪∂_1G∪(∂G-<∂_1G>^^^-. A solution of problem (*), (**), (***)-a) is called regular if it belongs to C^2(Ω_T)∩C^1(Ω_T). We call a solution of problem (*), (**), (***)-b) is regular if it belongs to C^2(Ω_T)∩C^1((G∪∂_1G∪(∂G-<∂_1G>^^^-))×[0,T]). In this note we show the following results: Proposition We denote by u^^〜 a solution of (*)-(***) under the condition F^^〜, u^^〜_0, u^^〜_1 with the same smoothness for that of F, u_0, u_1, respectively. For ε, ε_0, ε_1>0, if we have [numerical formula], then any regular solution u, u^^〜 of the problem (*)-(***) satisfy the inequalities [numerical formula], [numerical formula], [numerical formula], [numerical formula], where A is a certain constant, e_<jk> is strain component, ||・|| is usual L^2 seminorm, and [numerical formula] Corollary The regular solution of problem (*)-(***) is unique.
- 明治大学の論文
著者
関連論文
- 一様でない物質の弾性ポテンシャル論
- 一様でない物質の弾性ポテンシャル論
- 不均質物質の弾性学における基本境界値問題の積分方程式について
- 不均質物質の弾性学における基本境界値問題の積分方程式について
- 弾性論のDirichlet問題について
- 曲線座標系における応力関数
- 弾性論の初期境界値問題における解の連続依存性について
- 弾性問題における境界の変形と外力との関連性について
- 流体ポテンシャル論のある一般化