Statistical Independence of Generalized Chaotic Sequences(General)
スポンサーリンク
概要
- 論文の詳細を見る
We show that any string x_s, x_<s+1>, …, x_<s+r> (for any r) constitutes a set of statistically independent random variables given the generalized chaotic sequence x_n=cos[2πθz^n], where z is a typical real number. This result can be generalized to sequences of type x_n=P(z^n), where P(t) is a periodic function. We will discuss the relevance of this result to dynamical systems, real physical experiments, and new technological devices used in secure communications.
- 社団法人日本物理学会の論文
- 2006-02-15
著者
-
Trujillo Leonardo
Centro De Fisica Instituto Venezolano De Investigaciones Cientificas (ivic)
-
Gonzalez Jorge
Centro De Fisica Instituto Venezolano De Investigaciones Cientificas (ivic)
関連論文
- Prematurely Condensed Chromosome Rings after Neutron Irradiation of Human Lymphocytes
- Prematurely Condensed Chromosome Rings after Neutron Irradiation of Human Lymphocytes
- Statistical Independence of Generalized Chaotic Sequences(General)