MARGINAL MAXIMUM LIKELIHOOD ANALYSES OF INDIVIDUAL DIFFERENCES IN ADDITIVITY AND JUDGMENTAL CRITERIA FOR CATEGORICAL RATING DATA AND DECISION MAKING DATA
スポンサーリンク
概要
- 論文の詳細を見る
A marginal maximum likelihood(MML)estimation method is developed for the analysis of both categorical rating data and choice data for decision making in the context of uncertain outcomes. The proposed method fits the weighted additive models with interaction terms to the data, allowing for individual differences in weights, category boundaries, and thresholds. The present study demonstrates that the MML approach will be useful for dealing with individual differences in those variables as well as the subject points previously dealt with within the framework of multidimensional scaling. Bock and Aitkin's EM algorithm is used for the MML estimation of the proposed models.
- 日本行動計量学会の論文
日本行動計量学会 | 論文
- 2. Bayesian Generalized Bradley-Terry Model using RJMCMC
- 予測変数を伴う展開型項目反応モデル(一般セッション IRT)
- 刺激が複数の要因の影響下にあるときの尺度構成法 : Bradley-Terryモデルを用いて(セッションN-11(MK202) 一般セッション 心理2)
- プログラミング演習支援のためのコンパイルエラー分析(e-learning・e-testing)
- 4.問題解決力を涵養する統計教育支援教材の研究開発(特別セッション 問題解決力を育む統計教育の展開)