Logic Design of a Single-Flux-Quantum (SFQ) 2 × 2 Unit Switch for Banyan Networks(<特集>Special Issue on Superconductive Electronics)
スポンサーリンク
概要
- 論文の詳細を見る
We describe the logic design of a single-flux-quantum (SFQ) 2 × 2 unit switch. It is the main component of the SFQ Banyan packet switch we are developing that enables a switching capacity of over 1 Tbit/s. In this paper, we focus on the design of the controller in the unit switch. The controller does not have a simple "off-the-shelf" conventional circuit, like those used in shift registers or adders. To design such a complicated random logic circuit, we need to adopt a systematic top-down design approach. Using a graphical technique, we first obtained logic functions. Next, to use the deep pipeline architecture, we broke down the functions into one-level logic operations that can be executed within one clock cycle. Finally, we mapped the functions on to the physical circuits using pre-designed SFQ standard cells. The 2 × 2 unit switch consists of 59 logic gates and needs about 600 Josephson junctions without gate interconnections. We tested the gate-level circuit by logic simulation and found that it operates correctly at a throughput of 40 GHz.
- 社団法人電子情報通信学会の論文
- 2002-03-01
著者
-
Yorozu S
Nec Corp. Tsukuba Jpn
-
Yorozu Shinichi
Fundamental Research Laboratories Nec Corporation
-
Tahara S
System Devices Research Laboratories Nec Corporation
-
TAHARA Shuichi
Fundamental Research Laboratories, NEC Corporation
-
KAMEDA Yoshio
NEC
-
KAMEDA Yoshio
Fundamental Research Laboratories, NEC Corporation
-
Kameda Yoshio
Fundamental Research Laboratories Nec Corporation
関連論文
- Development of Cryopackaging and I/O Technologies for High-Speed Superconductive Digital Systems
- MRAM Applications Using Unlimited Write Endurance(Next-Generation Memory for SoC,VLSI Technology toward Frontiers of New Market)
- Writing Circuitry for Toggle MRAM to Screen Intermittent Failure Mode(Integrated Electronics)
- MRAM Writing Circuitry to Compensate for Thermal Variation of Magnetization Reversal Current
- Superconducting Technology for Digital Applications Using Niobium Josephson Junctions(Special Issue on Superconductive Devices and Systems)
- Technology Issues on Superconducting Digital Communication Circuits and Systems(Special Issue on Superconductive Electron Devices and Their Applications)
- Josephson Memory Technology
- A Resistor Coupled Josephson Polarity-Convertible Driver (Special Section on Superconducting Devices)
- Design and Demonstration of a 4×4 SFQ Network Switch Prototype System and 10-Gbps Bit-Error-Rate Measurement
- Development of Passive Interconnection Technology for SFQ Circuits(Digital Applications, Superconducting Electronic Devices and Their Applications)
- High-Speed Operation of a Single-Flux-Quantum (SFQ) Cross/Bar Switch up to 35GHz
- Logic Design of a Single-Flux-Quantum (SFQ) 2 × 2 Unit Switch for Banyan Networks(Special Issue on Superconductive Electronics)
- A Single Flux Quantum (SFQ) Packet Switch Unit towards Scalable Non-blocking Router(Special Issue on Superconductive Electronics)
- A Large-Scale Packet Switch System and 60-Gbps Pulse Arbitration Circuit Operation Using Single Flux Quantum Technology
- A Hybrid Switch System Architecture for Large-Scale Digital Communication Network Using SFQ Technology(Special Issue on Superconductive Electronics)
- A Novel, Large-Scale Packet Switch System and 60Gbps Arbiter Circuit Operation Using SFQ Technology
- Fabrication Processes for High-T_c Superconducting Integrated Circuits Based on Edge-Type Josephson Junctions(Special Issue on Superconductive Electron Devices and Their Applications)
- A High-Tc Superconductor Josephson Sampler (Special Issue on Basic Properties and Applications of Superconductive Electron Devices)
- Improvement of time resolution of the double-oscillator time-to-digital converter using SFQ circuits
- Design and Implementation of a Fully Asynchronous SFQ Microprocessor: SCRAM2
- Implementation and Experimental Evaluation of a Cryocooled System Prototype for High-Throughput SFQ Digital Applications
- Bit-Error-Rate Measurements of RSFQ Shift Register Memories
- A New Design Approach for High-Throughput Arithmetic Circuits for Single-Flux-Quantum Microprocessors
- Design and investigation of gate-to-gate passive interconnections for SFQ logic circuits
- 20 GHz operation of bit-serial handshaking systems using asynchronous SFQ logic circuits
- Implementation of a 4 x 4 switch with passive interconnects
- Advanced design approaches for SFQ logic circuits based on the binary decision diagram
- Demonstration of a single-flux-quantum microprocessor using passive transmission lines
- Progress of single flux quantum packet switch technology
- Consideration of logic synthesis and clock distribution networks for SFQ logic circuits
- Design and implementation of double oscillator time-to-digital converter using SFQ logic circuits
- Superconducting digital electronics
- High-speed test of SFQ-shift register files using PTL wiring
- Design and implementation of SFQ programmable clock generators
- Design and implementation of circuit components of the SFQ microprocessor, CORE1
- 18GHz Operation of an 8-bit Microprocessor Based on a Single-Flux-Quantum LSI Technology
- Flexible Superconducting Passive Interconnects with 50-Gb/s Signal Transmissions in Single-Flux-Quantum Circuits
- High-Speed Operation of a Single-Flux-Quantum (SFQ) Cross/Bar Switch up to 35 GHz
- A Large-Scale Packet Switch System and 60-Gbps Pulse Arbitration Circuit Operation Using Single Flux Quantum Technology