Analog Inverter with Neuron-MOS Transistors and Its Application(<特集>Special Section on Analog Circuit Techniques and Relate)
スポンサーリンク
概要
- 論文の詳細を見る
The analog inverter for realization of the NOT function is the indispensable circuit element in the voltage-mode analog and digital signal processing. In this paper, we propose a novel analog inverter composed of only two neuron-MOS transistors. The analog inverter has the weighted negative feedback mechanism to operate both of neuron-MOS transistors under the saturation region in all input ranges. In verification using HSPICE simulations, the analog inverter performs the high linearity with errors of approximately 40 [mV] in all input ranges, particularly errors of less than 19 [mV] in more than 90% of input ranges. And, the maximum power consumption of the analog inverter is less than 1.5 [μW] although a peak of a standard CMOS inverter is around 30 [μW] under the supply voltage of 3.0 [V]. These good stability and results are produced by the negative feedback. Furthermore, fabrication costs of the analog inverters can be kept at the minimum because neuron-MOS transistors can be actualized in a conventional CMOS process without any additional process. For applications of the analog inverter, the voltage comparator with high noise margins is designed and is applied to the two-input MAX and the two-input MIN circuits in the voltage-mode. The MAX and the MIN circuits for realization of the MAX and the MlN functions, respectively, can be composed of total ten transistors each. They also perform well in verifications. On the basis of the proposed circuits, almost all of voltage-mode multi-valued logic circuits with high-performance can be realized like present binary logic systems. And, the proposed circuits can give full play to the high linearity and advantages for the arbitrary transformation of signal forms in the analog signal processing such as the fuzzy control.
- 社団法人電子情報通信学会の論文
- 2002-02-01
著者
-
TANNO Koichi
Faculty of Engineering, Miyazaki University
-
ISHIZUKA Okihiko
Faculty of Engineering, Miyazaki University
-
Tanno K
Miyazaki Univ. Miyazaki‐shi Jpn
-
丹野 浩一
一関工高専
-
Tanno Koichi
Faculty Of Engineering Miyazaki University
-
ISHIZUKA Okihiko
Miyazaki University
-
Ishizuka Okihiko
The Faculty Of Engineering Miyazaki University
-
Ishizuka Okihiko
Faculty Of Engineering Miyazaki University
-
INABA Motoi
Faculty of Engineering, Miyazaki University
-
INABA Motoi
Tsukuba University of Technology
関連論文
- A High-Speed Binary to Residue Converter Using a Signed-Digit Number Representation
- 環境負荷低減技術によるキチン系バイオマス資源の高度利用 (特集 最近の食品プロセス工学の話題から)
- 1Hp11 セルロース系バイオマスのメカノケミカル粉砕処理と酵素糖化(バイオマス・資源・エネルギー工学,一般講演)
- ダイヤモンドと溶融金属とのぬれ性
- Mn3O4-NiOサ-ミスタの特性におよぼすAl2O3添加の影響
- 環境負荷低減技術によるキチン系バイオマス資源の高度利用 : メカノケミカル粉砕処理と酵素糖化
- 新しいエネルギー集中型媒体ミルによるZnO-TiO_2系化合物粉末のメカノケミカル合成
- キチン系バイオマス資源高度利用のための環境負荷低減技術(第2報)
- 3Ga13 メカノケミカル粉砕および酵素処理によるキチン質の糖化反応(酵素学,酵素工学,タンパク質工学,糖鎖工学,一般講演)
- エネルギー集中型高速高純度反応粉砕機, コンバージミル
- コンバージミルにおける環境分野への応用 (特集 業種別に見る粉体技術の活用)
- D-4-6 Visualization of EMR by Using Mining Technology
- メカニカルアロイングおよびメカノケミカル反応等の技術の発展に寄与するコンバージミル (特集 粉砕の現在と近未来技術)
- A Boolean Algebra Based Learnable Network
- A Learning Multiple-Valued Logic Network that can Explain Reasoning (特集 学習と自己組織化のアルゴリズム--理論とその応用)
- A Multiple-Valued Immune Network and Its Applications
- Neuron-MOS Current Mirror Circuit and Its Application to Multi-Valued Logic (Special Issue on Multiple-Valued Logic and Its Applications)
- A 1-V, 1-V_ Input Range, Four-Quadrant Analog Multiplier Using Neuron-MOS Transistors
- Ultra-Low Power Two-MOS Virtual-Short Circuit and Its Application
- Neuron-MOS V_T Cancellation Circuit and Its Application to a Low-Power and High-Swing Cascode Current Mirror
- 自己学習ファジ-コントロ-ラ
- High accuracy microprocessor controlled sine-wave generator
- 1 : n^2 MOS Cascode Circuits and Their Applications
- Design and Implementation of a Calibrating T-Model Neural-Based A/D Converter
- Hopfield Neural Network Learning Using Direct Gradient Descent of Energy Function
- Implementation of T-Model Neural-Based PCM Encoders Using MOS Charge-Mode Circuits
- A Learning Fuzzy Network and Its Applications to Inverted Pendulum System
- Midpoint-Validation Method for Support Vector Machine Classification
- Low-Voltage, Wide-Common-Mode-Range and High-CMRR CMOS OTA
- Design of CMOS OTAs for Low-Voltage and Low-Power Application
- Analog Inverter with Neuron-MOS Transistors and Its Application(Special Section on Analog Circuit Techniques and Relate)
- Multiple-Valued Neuro-Algebra
- A Model of Neurons with Unidirectional Linear Response
- Multiple-Valued Static Random-Access-Memory Design and Application : Special Issue on Multiple-Valued integrated Circuits
- Low-Voltage, Low-Distortion and Rail-to-Rail CMOS Sample and Hold Circuit(Nonlinear Theory and its Applications)
- Optimization and Verification of Current-Mode Multiple-Valued Digit ORNS Arithmetic Circuits
- Combiner-Based MOS OTAs(Analog Signal Processing)
- Wide-Input Range Variable Resistor Circuit Using an FG-MOSFET(Analog Signal Processing)
- Wide-Input Range Variable Resistor Circuit Using an FG-MOSFET
- Wide Input-Range Four-Quadrant Analog Multiplier Using Floating-Gate MOSFET's(Analog Signal Processing)
- Wide-Input-Range Four-Quadrant Analog Multiplier Using Floating-Gate MOSFET's
- Linear and Compact Floating Node Voltage-Controlled Variable Resistor Circuit( Analog Circuit Techniques and Related Topics)
- Low-Power and Wide-Input Range Voltage Controlled Linear Variable Resistor Using an FG-MOSFET and Its Application
- Design of a Novel MOS V_T Extractor Circuit
- 新材料創製技術として期待されるメカニカルアロイングとその周辺技術 (特集 活躍する破砕・粉砕技術)
- せん断型ミルによる粒子複合化とその応用 (新素材・ファインケミカルズの話題)
- 高真空剪断型ミルを用いた2重被覆型および多相分散被覆型複合粒子の調製 (〔粉体工学会〕第28回技術討論会--機能性材料製造のための混合・混練・分散技術)
- 新素材開発に寄与する金属系粉体 (高度化する粉体材料のファイン化技術)
- Sintering and Properties of SUS316L/PSZ Composite Particles
- メカノフュ-ジョン法による金属/セラミックス複合粒子の製造 (〔粉体工学会〕第25回夏期シンポジウム特集--粒子の分散--その手法と考え方)
- 金属粉のメカノフュ-ジョン処理による効果 (粒子の複合化技術とその特性評価)
- Design and Implementations of a Learning T-Model Neural Network
- Investigation and Analysis of Hysteresis in Hopfield and T-Model Neural Networks
- T-Model Neural Network for PCM Encoding
- O-201 木質系バイオマスの連続式コンバージミル粉砕と酵素糖化特性(セッション2:技術1:エタノール変換,研究発表,(口頭発表))
- New Circuit of Back-Gate Driven Flipped Voltage Follower