Solving Maximum Cut Problem Using Improved Hop field Neural Network
スポンサーリンク
概要
- 論文の詳細を見る
The goal of the maximum cut, problem is to partition the vertex set of an undirected graph into two parts in order to maximize the cardinality of the set of edges cut by the partition. The maximum cut problem has many important applications including the design of VLSI circuits and communication networks. Moreover, many optimization problems can be formulated in terms of finding the maximum cut in a network or a graph. In this paper, we propose an improved Hopfield neural network algorithm for efficiently solving the maximum cut problem. A large number of instances have been simulated. The simulation results show that the proposed algorithm is much better than previous works for solving the maximum cut problem in terms of the computation time and the solution quality.
- 社団法人電子情報通信学会の論文
- 2003-03-01
著者
-
TANG Zheng
Faculty of Engineering, Toyama University
-
CAO Qi-Ping
Tateyama Systems Institute
-
WANG Rong-Long
Faculty of Engineering, Fukui University
-
Wang Rong-long
Faculty Of Engineering Toyama University
-
Tang Zheng
Faculty Of Engineering Miyazaki University
-
Wang Rong-long
Faculty Of Engineering Fukui University
関連論文
- Ant Colony Optimization with Genetic Operation and Its Application to Traveling Salesman Problem
- Multilayer Network Learning Algorithm Based on Pattern Search Method(Neural Networks and Bioengineering)
- A Local Search Based Learning Method for Multiple-Valued Logic Networks(Neural Networks and Bioengineering)
- A Method of Learning for Multi-Layer Networks
- A Parallel Graph Planarization Algorithm Using Gradient Ascent Learning of Hopfield Network
- A Saturation Computation Method of Artificial Binary Neural Networks for Combinatorial Optimization Problems
- A Fast and Reliable Approach to TSP using Positively Self-feedbacked Hopfield Networks
- Objective Function Adjustment Algorithm for Combinatorial Optimization Problems(Numerical Analysis and Optimization)
- An Improved Artificial Immune Network Model(Neural Networks and Bioengineering)
- A Neural-based Algorithm for Topological Via-minimization Problem
- A New Method to Solve the Constraint Satisfaction Problem Using the Hopfield Neural Network
- An Artificial Immune Network with Multi-layered B Cells Architecture
- An Artificial Immune System Architecture and Its Applications(Neural Networks and Bioengineering)
- The Fuzzy Immune Network and Its Application to Pattern Recognition(Special Section on Papers Selected from ITC-CSCC 2002)
- Design and realization of a network security model
- Affinity Based Lateral Interaction Artificial Immune System(Human-computer Interaction)
- Avoiding the Local Minima Problem in Backpropagation Algorithm with Modified Error Function(Neural Networks and Bioengineering)
- An Engineering Immune Network Model for Pattern Recognition
- Pattern Classification Using A Fuzzy Immune Network Model
- D-2-6 A Parallel Direct Search Learning Algorithm for Feed-Forward Neural Networks
- A Multi-Layered Immune System for Graph Planarization Problem
- An Improved Maximum Neural Network with Stochastic Dynamics Characteristic for Maximum Clique Problem
- An Artificial Immune System with Feedback Mechanisms for Effective Handling of Population Size
- A Near-Optimum Parallel Algorithm for a Graph Layout Problem(Neural Networks and Bioengineering)
- Ant Colony Optimization with Genetic Operation and Its Application to Traveling Salesman Problem
- A Genetic Algorithm with Conditional Crossover and Mutation Operators and Its Application to Combinatorial Optimization Problems(Neural Networks and Bioengineering)
- Learning Method of Hopfield Neural Network and Its Application to Traveling Salesman Problem (特集:論文誌C発刊30周年記念)
- A Multiple-Valued Immune Network and Its Applications
- Neuron-MOS Current Mirror Circuit and Its Application to Multi-Valued Logic (Special Issue on Multiple-Valued Logic and Its Applications)
- A 1-V, 1-V_ Input Range, Four-Quadrant Analog Multiplier Using Neuron-MOS Transistors
- Ultra-Low Power Two-MOS Virtual-Short Circuit and Its Application
- 自己学習ファジ-コントロ-ラ
- Design and Implementation of a Calibrating T-Model Neural-Based A/D Converter
- Hopfield Neural Network Learning Using Direct Gradient Descent of Energy Function
- Implementation of T-Model Neural-Based PCM Encoders Using MOS Charge-Mode Circuits
- A Learning Fuzzy Network and Its Applications to Inverted Pendulum System
- An Elastic Net Learning Algorithm for Edge Linking of Images
- Solving Maximum Cut Problem Using Improved Hop field Neural Network
- A New Updating Procedure in the Hopfield-Type Network and Its Application to N-Queens Problem
- A Near-Optimum Parallel Algorithm for Bipartite Subgraph Problem Using the Hopfield Neural Network Learning
- Quantum Interference Crossover-Based Clonal Selection Algorithm and Its Application to Traveling Salesman Problem
- An Efficient Neural Algorithm for Two-layer Planarization Problem in Graph Drawing
- An Expanded Lateral Interactive Clonal Selection Algorithm and Its Application
- Improved Clonal Selection Algorithm Combined with Ant Colony Optimization
- An Improved Clonal Selection Algorithm and Its Application to Traveling Salesman Problems(Neural Networks and Bioengineering)
- A Novel Clonal Selection Algorithm and Its Application to Traveling Salesman Problem(Neural Networks and Bioengineering)
- A stochastic dynamic local search method for learning Multiple-Valued Logic networks
- An Improved Artificial Immune System (AIS) by Considering Different Affinities among Th Cells and Antigens
- Multiple-Valued Static Random-Access-Memory Design and Application : Special Issue on Multiple-Valued integrated Circuits
- Solving the Graph Planarization Problem Using an Improved Genetic Algorithm(Numerical Analysis and Optimization)
- An Efficient Algorithm for Minimum Vertex Cover Problem
- Two-Phase Pattern Search-based Learning Method for Multi-layer Neural Network
- A Chaotic Maximum Neural Network for Maximum Clique Problem(Biocybernetics, Neurocomputing)
- A Parallel Graph Planarization Algorithm Using Gradient Ascent Learning of Hopfield Network
- An Efficient Algorithm for Maximum Clique Problem Using Improved Hopfield Neural Network
- A Saturation Computation Method of Artificial Binary Neural Networks for Combinatorial Optimization Problems
- A Hopfield Network Learning Algorithm for Graph Planarization
- A Gradient Ascent Learning Algorithm for Elastic Nets
- A Hill-Shift Learning Algorithm of Hopfield Network for Bipartite Subgraph Problem(Neural Networks and Bioengineering)
- Solving the Bipartite Subgraph Problem Using Genetic Algorithm with Conditional Genetic Operators
- A Modified Hopfield Neural Network for the Minimum Vertex Cover Problem
- An Improved Transiently Chaotic Neural Network with Application to the Maximum Clique Problems
- An Elastic Net Learning Algorithm for Edge Linking of Images(Neural Netoworks and Bioengineering)
- A Novel Maximum Neural Network with Stochastic Dynamics for N-Queens Problems
- A Child Verb Learning Model Based on Syntactic Bootstrapping
- Design and Implementations of a Learning T-Model Neural Network
- Investigation and Analysis of Hysteresis in Hopfield and T-Model Neural Networks
- T-Model Neural Network for PCM Encoding
- Solving the m-Way Graph Partitioning Problem Using a Genetic Algorithm