Overview and Trend of Chain FeRAM Architecture(Special Issue on Nonvolatile Memories)
スポンサーリンク
概要
- 論文の詳細を見る
A chain ferroelectric random-access memory(chain FeRAM)is a solution for future high-density and high-speed nonvolatile memory. One memory cell consists of one transistor and one ferroelectric capacitor connected in parallel, and one memory cell block consists of plural cells and a block selecting transistor in series. This configuration realizes small memory cell of 4F^2 size and fast random access time. This paper shows an overview and trend of chain FeRAM architecture. First, the concept of chain FeRAM is presented, and basic operations including two cell-plate driving schemes are discussed. Second, assuming multi-megabit generation, ideal features and performances are discussed in terms of die size, speed and other aspects. Third, the prototype of chain FeRAM and the practical cell structure for megabit-scale memories using 0.5μm 2-metal CMOS process are demonstrated. By introducing fast and compact cell-plate drive technique, this prototype achieves random access time of 37-ns and read/write cycle time of 80-ns, which are the fastest speeds reported for FeRAMs. Fourth, after discussing future memory cell trend and problems respecting scaled FeRAMs, a gain cell block approach for future gigabit-scale chain FeRAMs is introduced. This realizes both a small average cell size and a large cell signal even at small cell polarization.
- 社団法人電子情報通信学会の論文
- 2001-06-01