A Study of the Approximate Expressions for Constriction Resistance of Multitude Conducting Spots (Special Issue on Electromechanical Devices and Their Materials)
スポンサーリンク
概要
- 論文の詳細を見る
Simple expressions for constriction resistance of multitude conducting spots were analytically formulated by Greenwood. These expressions, however, include some approximations. Nakamura presented that the constriction resistance of one circular spot computed using the BEM is closed to Maxwell's exact value. This relative error is only e=0.00162[%]. In this study, the constriction resistances of two, five and ten conducting spots are computed using the boundary element method (BEM), and compared with those obtained using Greenwood's expressions. As the conducting spots move close to each other, the numerical deviations between constriction resistances computed using Greenwood's expressions and the BEM increase. As a result, mutual resistance computed by the BEM is larger than that obtained from Greenwood's expressions. The numerical deviations between the total resistances computed by Greenwood's expressions and that by the BEM are small. Hence, Greenwood's expressions are valid for the total constriction resistance calculation and can be applied to problems where only the total resistance of two contact surfaces, such as a relay and a switch, is required. However, the numerical deviations between the partial resistances computed by Greenwood's expression and that by the BEM are very large. The partial resistance calculations of multitude conducting spots are beyond the applicable range of Greenwood's expression, since Greenwood's expression for constriction resistance of two conducting spots is obtained by assuming that the conducting spots are equal size. In particular, the deviation between resistances of conducting spots, which are close to each other, is very large. In the case of partial resistances which are significant in semiconductor devices, Greenwood's expressions cannot be used with high precision.
- 社団法人電子情報通信学会の論文
- 1999-01-25
著者
-
Nishiyama H
Department Of Measurement And Information Fuji Technical Research Center Inc.
-
NISHIYAMA Hitoshi
Department of Measurement and Information, Fuji Technical Research Center Inc.
-
MINOWA Isao
Department of Electronic Engineering, Tamagawa University
-
Minowa Isao
Department Of Electronic Engineering Tamagawa University
関連論文
- A Study of the Approximate Expressions for Constriction Resistance of Multitude Conducting Spots (Special Issue on Electromechanical Devices and Their Materials)
- Special Section on Recent Development of Electromechanical Devices (Selected Papers from ICEC2006)
- Thermo-electromotive force of Cu-Cu contact for precision measurements (国際セッションIS-EMD2002〔英文〕)
- A new thin endoscopic method of transanal drainage tube insertion for acute colonic obstruction due to colorectal cancer.