Learning Curves in Learning with Noise : An Empirical Study
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we apply the method of relating learning to hypothesis testing [6] to study average generalization performance of concept learning from noisy random training examples. A striking aspect of the method is that a learning problem with a so-called ill-disposed learning algorithm can equivalently be reduced to a simple one, and for this simple problem, even though a direct and exact calculation of the learning curves might still be impossible, a thorough empirical study can easily be performed. One of the main advantages of using the ill-disposed algorithm is that it well models lower quality learning in real situations, and hence the result can provide useful implications as far as reliable generalization is concerned. We provide empirical formulas for the learning curves by simple functions of the noise rate and the sample size from a thorough empirical study, which smoothly incorporates the results from noise-free analysis and are quite accurate and adequate for practical applications when the noise rate is relatively small. The resulting learning curve bounds are directly related to the number of system weights and are not pessimistic in practice, and apply to learning settings not necessarily within the Bayesian framework.
- 一般社団法人電子情報通信学会の論文
- 1997-01-25
著者
-
Takahashi Haruhisa
Department Of Communications And Systems Engineering The University Of Electro-communications
-
GU Hanzhong
Department of Communications and Systems Engineering, The University of Electro-Communications
-
Gu Hanzhong
Department Of Communications And Systems Engineering The University Of Electro-communications
関連論文
- Implementation Issues of Second-Order Cone Programming Approaches for Support Vector Machine Learning Problems
- Kernel Selection for the Support Vector Machine(Biocybernetics, Neurocomputing)
- A New Approach to the Structural Learning of Neural Networks(Neural Networks and Bioengineering)
- Learning Curves in Learning with Noise : An Empirical Study
- Estimating Learning Curves of Concept Learning