A Low Power Dissipation Technique for a Low Voltage OTA (Srecial Section on Analong Circuit Tectningues in the Digital-oriented Era)
スポンサーリンク
概要
- 論文の詳細を見る
This paper proposes a novel low power dissipation technique for a low voltage OTA. A conventional low power OTA with a class AB input stage is not suitable for a low voltage operation (±1.5 V supply voltages), because it uses composite transistors (referred to CMOS pair) which has a large threshold voltage. On the other hand, the tail-current type OTA needs a large tail-current value to obtain a sufficient input range at the expense of power dissipation. Therefore, the conventional tail-current type OTA has a trade-off between the input range and the power dissipation to the tail-current value. The trade-off can be eliminated by the proposed technique. The technique exploits negative feedback control including a current amplifier and a minimum current selecting circuit. The proposed technique was used on Wang's OTA to create another OTA, named Low Power Wang's OTA. Also, SPICE simulations are used to verify the efficiency of Low Power Wang's OTA. Although the static power of Low Power Wang's OTA is 122μW, it has a sufficient input range, whereas conventional Wang's OTA needs 703 μW to obtain a sufficient input range. However, we can say that as the input signal gets larger, the power of Low Power Wang's OTA becomes larger.
- 社団法人電子情報通信学会の論文
- 1998-02-25
著者
-
Hyogo A
Tokyo Univ. Sci. Noda‐shi Jpn
-
Hyogo Akira
Department Of Electrical Engineering Faculty Of Science And Technology Science University Of Tokyo
-
Hyogo Akira
The Faculty Of Science And Technology Science University Of Tokyo
-
Sekine K
Tokyo Univ. Sci. Noda‐shi Jpn
-
Sekine Keitaro
Department Of Electrical Engineering Faculty Of Science And Technology Science University Of Tokyo
-
Sekine Keitaro
The Faculty Of Science And Technology Science University Of Tokyo
-
Ibaragi Eitake
The Department Of Electrical Engineering Science University Of Tokyo
-
IBARAGI Eitake
the Faculty of Science and Technology, Science University of Tokyo
関連論文
- FOREWORD
- Low Voltage High-Speed CMOS Square-Law Composite Transistor Cell (Special Section on Analog Circuit Techniques and Related Topics)
- LV CMOS Analog VLSI Composite Cell Design and its Application to High Speed Multiplier
- Low Voltage Low Power Class AB OTA and V-I Converter
- LV/LP CMOS Square-Law Composite Transistors for Analog VLSI Applications
- A Single-Ended-Input Fully-Balanced-Output CMOS Circuit
- A Current-to-Frequency Converter for Switched-Current Circuits (Srecial Section on Analong Circuit Tectningues in the Digital-oriented Era)
- A Current-to-Frequency Converter Using Switched-Current Circuits
- A Phase Compensation Technique without Capacitors for the CMOS Circuit with a Very Low Impedance Terminal(Special Section on Analog Circuit Techniques and Related Topics)
- A Very High Output Impedance Tail Current Source for Low Voltage Applications(Special Section on Analog Circuit Techniques and Related Topics)
- A Novel CMOS Analog Square Circuit Free from Mobility Reduction and Body Effect
- A CMOS Analog Multiplier Free from Mobility Reduction and Body Effect (Special Section on Analog Circuit Techniques and Related Topics)
- A Design Technique of the CMOS Circuit with a Very Low Impedance Terminal for Stability
- A Low Power Dissipation Technique for a Low Voltage OTA (Srecial Section on Analong Circuit Tectningues in the Digital-oriented Era)
- Low Power Dissipation Technique for OTA
- A Method to Improve CMRR for CMOS Operational Amplifier by Using Feedforward Technique (Special Section on Analog Circuit Techniques for System-on-Chip Integration)
- A Design for Low-Voltage Switched-Opamp with ON-Phase High Open-Loop Gain and OFF-Phase High-Output Impedance(Analog Circuit and Device Technologies)