One-Point Algebraic Geometric Codes from Artin-Schreier Extensions of Hermitian Function Fields (Special Section on Information Theory and Its Applications)
スポンサーリンク
概要
- 論文の詳細を見る
Recently, Garcia and Stichtenoth proposed sequences of algebraic function fields with finite constant fields such that their sequences attain the Drinfeld-Vladut bound. In the sequences, the third algebraic function fields are Artin-Schreier extensions of Hermitian function fields. On the other hand, Miura presented powerful tools to construct one-point algebraic geometric (AG) codes from algebraic function fields. In this paper, we clarify rational functions of the third algebraic function fields which correspond to generators of semigroup of nongaps at a specific place of degree one. Consequently, we show generator matrices of the one-point AG codes with respect to the third algebraic function fields for any dimension by using rational functions of monomial type and rational points.
- 社団法人電子情報通信学会の論文
- 1998-10-25
著者
-
Umehara Daisuke
Department Of Communications And Computer Engineering Graduate School Of Informatics Kyoto Universit
-
Uyematsu T
The Dept. Of Communications And Integrated Systems Tokyo Institute Of Technology
-
UEMATSU Tomohiko
Department of Electrical & Electronic Engineering, Faculty of Engineering, Tokyo Institute of Techno
-
Umehara D
Kyoto Univ. Kyoto‐shi Jpn
-
Uematsu Tomohiko
Department Of Electrical & Electronic Engineering Faculty Of Engineering Tokyo Institute Of Tech
関連論文
- A Synchronization Method for Synchronous CDMA Broadband Communication Systems with GEO Satellites(Recent Fundamental Technologies for Broadband Satellite Communications)
- Efficient Secret Sharing Schemes Based on Authorized Subsets(Cryptography and Information Security)
- Secret Key Capacity for Ergodic Correlated Sources(Information Theory)
- One-Point Algebraic Geometric Codes from Artin-Schreier Extensions of Hermitian Function Fields (Special Section on Information Theory and Its Applications)
- A Simple Parallel Algorithm for the Ziv-Lempel Encoding
- An Efficient Universal Coding Algorithm for Noiseless Channel with Symbols of Unequal Cost
- Proposal of an Automatic Signature Scheme Using a Compiler (Special Section on Cryptography and Information Security)
- Reliability Functions for Concatenated Codes Employing Modular Codes with Maximum Likelihood Decoding
- Permutation Cipher Scheme Using Polynomials over a Field