スピーカのシステム関数の一測定法
スポンサーリンク
概要
- 論文の詳細を見る
The measurement method for obtaining the system dynamics of a loudspeaker in the form of the system function is discussed assuming that the loudspeaker is a linear time invariant system. Generally, in a linear time invariant system the relation between the input to the system and the output from it can be represented by its impulse response or its system function. The measurement method of the system function in a frequency domain has some characteristic comparable to these of the impulse response in a time domain. Namely, since the stationary continuous signal is used as the input test signal, the measurement can be performed without the confluences of loudspeaker non-linearity and the measuring system noise. On the other hand, the difficulty of phase measurement comes into question. In this paper, since there exist only a relation between the phase characteristic and the group delay characteristic, the theory of the simultaneous measurement for the amplitude frequency characteristic and the group delay frequency characteristic is investigated to obtain the system function. In this case, the balanced modulated signal as indicated by eq. (2) is used for the input test signal. When the input signal f(t) is introduced into the system, its response signal g(t) is indicated by eq. (8). Using the assumption of eq. (9) and approximation of eq. (10), appearing in the result, g(t) can be represented by eq. (11). Accordingly, A(ω_0) can be measured by comparing the maximum envelope amplitude of g(t) with that of f(t), using the block diagram as shown in Fig. 1 (a). Furthermore, τ(ω_0) can be measured by comparing the time delay between the envelope of f(t) and that of g(t), using the block diagram as shown in Fig. 2 (a). By means of these measurements for all measurable frequencies, it is posiible to obtain the system function. Next, the possibility of the above measurements, in case the amplitude characteristic is subjected to wide fluctuations as a loudspeaker, is investigated. In such a case, the response signal g(t) for the input test signal is indicated by eq. (14), and its waveform is shown in Fig. 5. In this case, since the maximum envelope value of A_1 and A_2, it is seen that A(ω) can be measured with good approximation by selecting a sufficiently small Δω. When the envelope waveform of g(t) is analyzed into its frequency components by using the Maclaurin expansion, eq. (17) and eq. (18) are obtained. As is clear from these equations, since the time delay of the 2Δω component of g(t) is equal to τ(ω_0) as compared with that of f(t), the measurement of τ(ω) presents no problem. The measuring apparatus for the system function was made, based on the theory of the simultaneous measurement for A(ω) and τ(ω). This fundamental block diagram is shown in Fig. 7. The parts for the A(ω) measurement and τ(ω) measurement are used respectively in the block diagrams shown in Fig. 1 (a) and Fig. 2 (a). Measurement results are converted from analog values to digital values and can be used as input data of a digital computer by OFF-LINE intermadiated by punched papaer tape. Fig. 8 (a) and Fig. 8 (b) are one example of measurement results. In addition, echo distortion caused by group delay characteritic has been taken into consideration.
- 社団法人日本音響学会の論文
- 1978-05-01
著者
関連論文
- 情報量基準による超音波画像復元法
- 平行移動と回転に不変な特徴量を用いたニューロ超音波視覚センサによる3次元物体の識別法
- ニューラルネットワークを利用した超音波画像の一復元法
- 超音波映像法とニューラルネットワークを用いた3次元物体認識法
- パラメトリックスピーカ実用化への検討
- 非線形最適化手法による音響放射系のインパルス応答の合成
- ホログラフィ-干渉法による変形の向きの測定
- ホログラフィ-干渉法による微小変形の変形の向きの検出(技術談話室)
- 音響再生機器システム関数補正回路の検討
- ターンテーブルシートの一評価法
- モアレフリンジホログラフィ-による振動解析--測定限界の拡張
- モアレフリンジホログラフィ-による振動解析--干渉じま計数の容易化
- スピーカのシステム関数の一測定法
- 擾乱中におけるスピーカ振動モードのホログラフィ撮影法
- フィルタリング処理による画像反転方式の検討
- モノカラー再生系における空間処理-II : 最適空間フィルターによるフィルム粒状性雑音の低減
- モノカラー再生系における空間処理-I : OTF修正空間フィルターによるビジコンプリアンプ雑音の効果の低減
- モノカラー記録再生系のシステム研究 : 2次元領域における検討
- 単管カラーフィルムカメラの光学系
- 12-1 モノカラーシステム再生系における空間情報処理
- 5-25 接合形FETの等価雑音抵抗の一測定法
- 12-5 映像蓄積装置
- 4-2 周波数分離方式における偽信号の発生機構について