インパルス音波を用いた音響映像法
スポンサーリンク
概要
- 論文の詳細を見る
In the conventional pulse-echo method or acoustical holography, it is difficult to obtain high resolutions in lateral and longitudinal directions simultaneously. We have developed a new acoustic imaging method to improve both resolutions. This method is similar to holography but uses an impulsive sound. When a point source at a point P projects an impulsive sound p(t), the signal reflected from a point O at a object and received at Q is expressed by Eq. (1), where r_0 and r_i are the distances as shown in Fig. 1. These signals are recorded with a multi-channel data recorder and an image of the object is reconstructed with the aid of a computer. If a point O', coincides with O, the summed signal B expressed by Eq. (2) becomes maximum and is expressed by Eq. (3). Then we define that the magnitude of an image at a point O' is expressed by the rms value of B within the pulse duration. We can obtain an image of an object by calculating Eq. (4) at all points in space. In this paper, we have reconstructed an image in the x-z plane of a point source by calculating Eq. (4a). As shown in Fig. 2, a reconstructed image of a point source at O is expressed by Eq. (7) in acoustical acoustical holography. The lateral resolution is 0. 6λL/a as is well know, where λ is wave length, L is the distance from a source to the receiving plane and 2a is the aperture of a receiving plane. On the other hand, the range resolution is 2. 4λL^2/a^2 even when a^2/L>>λ and is worse than the lateral one by a factor of 4L/a. Moreover, a discrete arrangement of receivers with a large interval in between causes the appearance of diffracted images of higher order with equal magnitude to the real image. In this imaging method, when a point source projects a very short pulse expressed by Eq. (11) where T_p is pulse duration, the image distribution on the z-axis is expressed by Eq. (12). Then the range resolution depends on only pulse length cT_p. For example, if p(t)=1, T_p=n/f (n is a multiple of 0. 5), the range resolution is 1. 5 nλ as shown in Eq. (14). We calculated the image distribution on a line parallel to the x-axis at L where L=2a=100λ and N=11. As shown in Fig. 6, the lateral resolution is about 1. 25λ when p(t)=1 and n=1. When a source projects a pulse expressed by Eq. (15), the relation between waveform of pulse and image distribution in Fig. 7. Fig. 8 shows the lateral resolution when (p(t)=1, n=1) and (T_p=1. 5/f, τ=0. 6/f). Experiments were performed in air using a small speaker as an object. A block diagram for experiments is shown in Fig. 11. The speaker projected a sinusoidal pulse of about one cycle (wave length λ=34 mm). Fig. 12 shows the clear image of the speaker. Figs. 14 and 15 show the separated images of two speakers located with a separation of 75 mm in lateral and longitudinal directions respectively.
- 社団法人日本音響学会の論文
- 1977-10-01
著者
関連論文
- 1P9-9 南極リツォホルム湾における伝搬パルス波の数値解析(ポスターセッション)
- インパルス音波による地下埋設管の探査実験
- インパルス音波による川砂中の音波減衰定数の測定
- インパルス音波による砂中の音波減衰特性の測定
- 地中埋設物探査用受波器
- 地下埋設物探査用電磁誘導形送波器
- 超音波吸収による生体内の温度上昇の数値解析
- 超音波吸収による生体内の温度上昇の数値解析
- 1P6-16 水中音響レンズの幾何的性能評価法の検討(ポスターセッション)
- 1P6-1 南極リュツォ・ホルム湾におけるパルス波形の数値解析(ポスターセッション)
- C-3 実時間高分解能映像装置用水中音響レンズの波動的解析(水中音響)
- P1-75 数値計算による水中音響レンズシステムの収束特性(ポスターセッション1(概要講演))
- A-21 片面接水鋼板を面に垂直な方向に励振したときの減衰定数の測定(基礎・計測IV)
- 3J-12 四次元広角イメージングソーナーシステムの開発 : 水槽及び実海域試験について(圧電デバイス&水中音響)
- 3P-59 海丘を有する南極浅海での音波伝搬シミュレーション(ポスターセッション)
- 不等間隔で並んだ粒径分布を持つ気泡群の非線形応答計算
- 流径分布をもつ微小気泡群の超音波照射に対する非線形応答
- インパルス音波音響映像法における再生画像の改善
- 2)インパルス音波を用いた音響映像法(画像技術応用研究会(第38回))
- インパルス音波を用いた音響映像法
- インパルス音波を用いた音響映像法
- 電子走査超音波断層像装置用Array形送受波器の重み係数の設計
- 後方散乱波の測定による散乱媒質の超音波減衰定数計測の一方法
- 電子走査式超音波診断装置用探触子の素子配列
- P-15 スパッタ法による銅凸面振動膜を持つ電磁誘導型送波器(ポスター:医用超音波,超音波計測,送受波器)
- 3-7 インパルス超音波を用いた高分解能映像法(一般講演)
- 多層球レンズの構成とその特性
- 3Pa5-6 熱画像によるパルス繰り返し周波数を変化させたときのファントム内部の温度上昇の測定(ポスターセッション)
- 3Pa6-2 投影積分による複合水中音響レンズの性能評価の検討(ポスターセッション)