RBF を用いた NN による時系列予測について
スポンサーリンク
概要
- 論文の詳細を見る
本論文では, 放射状基底関数(RBF)を用いたニューラルネットワーク(NN)として RBF ネットフーク(RBFN), 回帰ニューラルネットワーク(GRNN), そしてハイブリッド RBF ネットワーク(H-RBFN)を取り上げ, 各 NN の性能評価を行う. RBFN は, 入カデータの特徴付けを有効に行う RBF を入出力関数とした NN で, 一般的に広く用いられている. また, RBFN を拡張させた GRNNは, 荷重設定を回帰理論に基づいて行う feed-forward 型 NN で, 関数近似に対して優れたものとされている. これに対し H-RBFN は, 一般的に知られているシグモイド関数を RBFN に結合させ, パックプロパゲーション(BP)則を用いて荷重修正を行う NN である. 本実験では, 時系列の予測問題を取り上げ, これらの NN および一般的な BP ネットワーク(BPN)の予測性能について比較検封する.
- 1998-01-23
論文 | ランダム
- CoMo/Al2O3触媒によるジベンゾチオフェンおよび2,8-ジエチルジベンゾチオフェンの水素化反応 (論文特集「地球環境および地域環境と化学」-その2-) -- (環境保全と汚染防除)
- 市販有機過酸化物の熱分解
- エネルギー政策と建築 (主集・省エネルギー時代の建築計画)
- NH4Yゼオライト触媒によるジベンゾチオフェンの接触水素化脱硫反応
- 地上デジタル放送マスタ送出システム (特集 地上デジタル放送用システム機器設備--信頼と実績で放送トータルソリューションを実現)