RBF を用いた NN による時系列予測について
スポンサーリンク
概要
- 論文の詳細を見る
本論文では, 放射状基底関数(RBF)を用いたニューラルネットワーク(NN)として RBF ネットフーク(RBFN), 回帰ニューラルネットワーク(GRNN), そしてハイブリッド RBF ネットワーク(H-RBFN)を取り上げ, 各 NN の性能評価を行う. RBFN は, 入カデータの特徴付けを有効に行う RBF を入出力関数とした NN で, 一般的に広く用いられている. また, RBFN を拡張させた GRNNは, 荷重設定を回帰理論に基づいて行う feed-forward 型 NN で, 関数近似に対して優れたものとされている. これに対し H-RBFN は, 一般的に知られているシグモイド関数を RBFN に結合させ, パックプロパゲーション(BP)則を用いて荷重修正を行う NN である. 本実験では, 時系列の予測問題を取り上げ, これらの NN および一般的な BP ネットワーク(BPN)の予測性能について比較検封する.
- 1998-01-23
論文 | ランダム
- ATPの測定法とその排水処理への応用(Environmental Science and Technology,Vol.9,No.10,October,1975) (水質測定(文献抄録))
- TV周辺の近い将来に望むこと(テレビジョン学会創立25周年記念特集)
- 緑藻類の好気性分解による栄養塩の回帰(Environmental Science and Technology,Vol.11,No.4,April,1977) (富栄養化(文献抄録))
- 日本のテレビ技術に望む
- 地下水人工かん養と排水再利用(Jour.American Water Works Association,Vol.67,No.9,September,1975) (下水の再利用(文献抄録))