RBF を用いた NN による時系列予測について
スポンサーリンク
概要
- 論文の詳細を見る
本論文では, 放射状基底関数(RBF)を用いたニューラルネットワーク(NN)として RBF ネットフーク(RBFN), 回帰ニューラルネットワーク(GRNN), そしてハイブリッド RBF ネットワーク(H-RBFN)を取り上げ, 各 NN の性能評価を行う. RBFN は, 入カデータの特徴付けを有効に行う RBF を入出力関数とした NN で, 一般的に広く用いられている. また, RBFN を拡張させた GRNNは, 荷重設定を回帰理論に基づいて行う feed-forward 型 NN で, 関数近似に対して優れたものとされている. これに対し H-RBFN は, 一般的に知られているシグモイド関数を RBFN に結合させ, パックプロパゲーション(BP)則を用いて荷重修正を行う NN である. 本実験では, 時系列の予測問題を取り上げ, これらの NN および一般的な BP ネットワーク(BPN)の予測性能について比較検封する.
- 1998-01-23
論文 | ランダム
- ケアワーカーのスピリチュアリティ研究 : 施設職員への調査からの考察(青木信雄教授退職記念号)
- 27.道徳性・スピリチュアリティと精神的健康(一般演題,第42回日本心身医学会近畿地方会演題抄録)
- II-1. スピリチュアリティ,オーセンティシティーと首尾一貫性が健康に貢献するメカニズム(一般演題,第106回日本心身医学会関東地方会演題抄録)
- 仕事と意味実現
- 民俗文化の資源性におけるスピリチュアリティ(第十部会,第六十五回学術大会紀要)