RBF を用いた NN による時系列予測について
スポンサーリンク
概要
- 論文の詳細を見る
本論文では, 放射状基底関数(RBF)を用いたニューラルネットワーク(NN)として RBF ネットフーク(RBFN), 回帰ニューラルネットワーク(GRNN), そしてハイブリッド RBF ネットワーク(H-RBFN)を取り上げ, 各 NN の性能評価を行う. RBFN は, 入カデータの特徴付けを有効に行う RBF を入出力関数とした NN で, 一般的に広く用いられている. また, RBFN を拡張させた GRNNは, 荷重設定を回帰理論に基づいて行う feed-forward 型 NN で, 関数近似に対して優れたものとされている. これに対し H-RBFN は, 一般的に知られているシグモイド関数を RBFN に結合させ, パックプロパゲーション(BP)則を用いて荷重修正を行う NN である. 本実験では, 時系列の予測問題を取り上げ, これらの NN および一般的な BP ネットワーク(BPN)の予測性能について比較検封する.
- 1998-01-23
論文 | ランダム
- 高周波・高電圧試験装置による送信設備の信頼性評価
- D-13)小腸NK/T細胞リンパ腫の1例(D リンパ節病変,他,2007年小児腫瘍症例検討会)
- インテリジェント義足の開発と臨床(リハビリテーション工学の進歩と応用,第43回 日本リハビリテーション医学会 学術集会)
- 9.術前診断が困難であった胸腔内リンパ管腫の1例(一般演題,第76回日本小児外科学会北海道地方会)
- 1.絞扼性イレウスにて発症した消化管重複症の1例(一般演題,第76回日本小児外科学会北海道地方会)