RBF を用いた NN による時系列予測について
スポンサーリンク
概要
- 論文の詳細を見る
本論文では, 放射状基底関数(RBF)を用いたニューラルネットワーク(NN)として RBF ネットフーク(RBFN), 回帰ニューラルネットワーク(GRNN), そしてハイブリッド RBF ネットワーク(H-RBFN)を取り上げ, 各 NN の性能評価を行う. RBFN は, 入カデータの特徴付けを有効に行う RBF を入出力関数とした NN で, 一般的に広く用いられている. また, RBFN を拡張させた GRNNは, 荷重設定を回帰理論に基づいて行う feed-forward 型 NN で, 関数近似に対して優れたものとされている. これに対し H-RBFN は, 一般的に知られているシグモイド関数を RBFN に結合させ, パックプロパゲーション(BP)則を用いて荷重修正を行う NN である. 本実験では, 時系列の予測問題を取り上げ, これらの NN および一般的な BP ネットワーク(BPN)の予測性能について比較検封する.
- 1998-01-23
論文 | ランダム
- 届け!がん患者たちの声(55)医療者には患者さんの生活や人生も見てほしい
- 私の生きる道 寺内タケシ ミュージシャン わが健康哲学は「備えあれば嬉しい」
- 野崎洋光の旬を味わう免疫アップレシピ
- 作弥のハートフル対談 絵画を思考の手段に高めた男 「生誕百年」岡本太郎の真実を話そう
- 埋め草「タンパク質立体構造散歩」の経緯