Xが中間領域の場合のベッセル関数の近似計算
スポンサーリンク
概要
- 論文の詳細を見る
ベッセル関数J_0(x),J_1(x),Y_0(x),Y_1(x),の近似で、独立変数Xが小さい場合はべき級数展開式、Xが大きい場合は漸近展開式をもとにした近似式が、一般に採用される。しかし、Xが中間領域の場合では、べき級数展開式をもとにした近似式において中間項が大きくなり過ぎることにより精度か悪くなる。また、漸近展開式においてXの値が比較的小さい場合、最小の値になる項が大きな値になり、高精度計算か不可能になる。従って従来は、Xが小さい領域に適用される近似式を高精度計算により計算させたり(文献1)、漸化式による逆行計算法で計算させたり(文献2)、漸近展開式にC.Lanczosのτ法を適用して計算させたり(文献3)していた。しかし、これらは演算量が多くなる傾向がある。ここでは、少ない演算量で精度良く中間領域のXに対する近似式を生成する方法として、中間領域を中心に近似区間を持つテーラー展開式の生成及び、その最良近似式化を提案する。
- 一般社団法人情報処理学会の論文
- 1988-09-12
著者
関連論文
- 三重対角行列の固有値を求めるための諸算法について
- 方程式の全根を求める方法
- 初等関数の精度低下防止法
- Xが中間領域の場合のベッセル関数の近似計算
- 多重積分への加速法の適用
- 検査工程における品質管理技術 (SWQC)