Variation diminishing spline 関数の knots の配置とその多重度の決定について
スポンサーリンク
概要
- 論文の詳細を見る
In the problem of approximation by spline functions, the decision of knots has a very important influence to approximation accuracy and so on. H.B.Curry & I.J.Schoenberg (1) showed that a spline function S(x) of order m (or degree m-1) with the mutiplicity r of knots belongs to C^<m-1-r> near at their knots. In this paper, we identify the behavior of normalized B-splines and the Properties of variation diminishing spline functions with multiple knots, and present the algorithms to decide the locations and multiplicities of knots. In these algorithms, the rate of convergence in error estimate is improved. Moreover error estimate has an advantage that is related to only the modulus of continuity of function which is approximated by variation diminishing spline functions.
- 1978-03-15
著者
関連論文
- Fuzzy空間についての考察 (山内二郎・高木貫一先生退任記念号)
- 確率密度関数のVariation Diminishing Spline関数表現とその特性関数
- Variation diminishing spline 関数の knots の配置とその多重度の決定について
- データリダクションへのV.D.Spline関数の適用
- Variation Diminishing Spline 関数の knots の決定法について