周辺尤度を用いたマルコフ切替モデルと確率的水準遷移モデルの比較
スポンサーリンク
概要
- 論文の詳細を見る
This paper compares Markov switching model (Hamilton (1989)) and random level shift model (McCulloch and Tsay (1993)) using Marginal likelihood, a Bayesian model selection criteria. Markov switching (MS) model have used in many empirical analysis focusing on regime switching in economical and financial issue. On the other hand, random level shift (RLS) model have used mainly in engineering and medical statistics. But, both model can analyze some change in parameters, that is, structural change. The data made by MS model and RLS model are very similar. In economical field, analysts never know the true system. But using marginal likelihood, we can find out better model. This criteria is used in Bayesian frame work, not in classical econometrics. RLS model can not estimated by classical frame work. This model is in non-linear non-Gaussian state space model class, so, very complicated. Barnette, Kohn, Sheather and Wong (1993) show a estimation method using Bayesian Markov Chain Monte Carlo (MCMC) without approximations. Of course, for MS model, we can estimate by MCMC. First, this paper shows new estimation methods for RLS model based on MCMC. Second, we apply Chib (1995), estimate marginal likelihood of both models and compare the goodness of fit. As the result, we find out RLS model is better than MS model.
- 2003-12-03
論文 | ランダム
- 顔面神経麻痺患者の心理的苦痛・生活障害度に関する検討 : 質問紙作成の試み
- 初診時低音障害型の感音難聴を示した症例の検討
- 実施法と評定者間信頼性からみたバウムテスト研究の精度 : バウムテスト文献レビュー(第二報)
- 日本におけるバウムテスト研究の変遷 : バウムテスト文献レビュー(第一報)
- 大谷良光著, 『子どもの生活概念の再構成を促すカリキュラム開発論 技術教育研究』, 学文社刊, 2009年2月発行, B5判, 237頁, 本体価格2,500円