205 On the delamination problem of particle-dispersed composite with equivalent inclusion method
スポンサーリンク
概要
- 論文の詳細を見る
The composite materials are deemed to be the most favorable candidate materials of many engineering structures due to their superior specific characteristics in strength, stiffness, costs, and weight, etc, in the regime of high temperatures, and/or other severe environmental conditions. At the same time it has been revealed that the composite materials are susceptible to interface delamination, which may be caused by thermal/mechanical impact, and/or fatigue loading. The properties of composites will significantly degrade when the interface between the matrix and the particles undergoes delamination. The effects of delamination on the properties of composites are evaluated by developing a self-consistent constitutive model that utilizes the Eshelby's equivalent inclusion method, modeling the interfacial degrading phenomena on the effect of the composite. By modeling the delamination with a spring layer and making equivalence of stress and strain of particles to those of a virtual inclusion, an averaged Eshelby tensor is derived explicitly. The additional strain caused by the displacement jump at the interface can be expressed in terms of either external loading or eigenstrain, by employing two corresponding tensors. These tensors can conveniently be incorporated into the constitutive model, and make it available to assess the effects of delamination. The details of the modeling and the effects of the interfacial behavior will be discussed with some numerical results.
- 一般社団法人日本機械学会の論文
- 2002-03-11
著者
関連論文
- 1727 マイクロ繊維分散複合材料の局所塑性損傷における評価
- 838 粒子界面すべりとはく離損傷を有する複合材料モデル
- 734 界面スプリングを配した介在物粒子のメゾ損傷モデル
- 911 完全/不完全界面状態にある介在物をもつ複合材料モデル
- 130 メゾ粒子界面のすべり/はく離を考慮した材料構成モデル
- 205 On the delamination problem of particle-dispersed composite with equivalent inclusion method
- K-0514 結晶すべりモデルを用いた塑性変形と粒子すべりモデルを用いた超塑性挙動の検討(S04-1 微視組織と変形・接続信頼性)(S04 金属材料の組織と疲労強度信頼性)
- 541 微視的剥離損傷を含む粒子分散モデル(OS7-5 マルチスケールII)(OS7 微視構造を有する材料の力学)