740 接続理論に基づく非ホロノミック系のダイナミクスの定式化(解析方法・衝突)(OS.13 : 非線形現象の解明と応用)
スポンサーリンク
概要
- 論文の詳細を見る
The paper presents a geometrical approach to dynamical formulation of nonholonomic mechanical systems like multibody systems with nonintegrable constraints. It is first shown that we employ Ehresmann connections to describe admissible subspaces in the configuration space of the nonholonomic mechanical systems. Then we demonstrate that a geometrical structure of the constrained mechanical system can be represented by dual connection matrices N, B which are derived from the nonenergic condition. Finally it is illustrated that d'Alembert-Lagrange principle enables us to systematically formulate reduced equations of motion of the nonholonomic mechanical systems by employing connection theory.
- 2001-08-03
論文 | ランダム
- Ultraviolet Laser Ablation of a Silicon Wafer
- 有限な点検回数をもつ貯蔵品の最適点検方策
- フェーズドアレイレーダの最適保全方策(第5回研究発表会)
- 多段階組立工程の最適バーンイン試験時間
- 試験時に発生する費用を考慮した最適バーンイン時間(II)(信頼性(2))