非定常非圧縮性粘性流に適するGSMAC有限要素法 : 第1報,高レイノルズ数に安定な解法
スポンサーリンク
概要
- 論文の詳細を見る
We present a new fast finite element method which is called the generalized-simplified marker and cell method (GSMAC) as an extention of the SMAC finite difference method of Amsden and Harlow. There are several new features of the GSMAC method, which is distinguished from other iterative finite element methods. We use two important concepts, orthogonal decomposition and cycle-to-cycle self-adjustment, which allow a stable and accurate calculation of unsteady flow fields at high Reynolds numbers without any artificial modification. As a result, the GSMAC method has proved to be faster than the other finite element methods and to require only the same amount of CPU time and storage as the standard finite difference method. The results of calculation in a square cavity agree very well with those of Ghia et al.. Especially for R_e=5000 and 10000, the same degree of accuracy can be obtained with 1/26.4 of mesh points.
- 社団法人日本機械学会の論文
- 1987-03-25
著者
関連論文
- 多重格子アルゴリズムを用いた圧縮性粘性流体の数値解析:Implicit MacCormack法の改良への一提案
- 非定常非圧縮性流に適するGSMAC有限要素法 : 第2報,高レイノルズ数における正方形キャビティ内流れ
- 非定常非圧縮性粘性流に適するGSMAC有限要素法 : 第1報,高レイノルズ数に安定な解法
- 物体に働く非定常流体力に関する研究 : 第3報,偏平な傾斜だ円柱