非線形計画法による平板の大たわみ解析 : 第4報, 内周が固定支持された軸対称定厚中空円板, および大たわみ問題の設計式
スポンサーリンク
概要
- 論文の詳細を見る
The large deflection analysis of the annular plates with clamped inner edges is investigated using the nonlinear programming technique. The distributions of out-of-plane and in-plane displacements and stresses are shown in the three cases. Then, the coefficients of the design formulae for the large deflection problem are proposed for the ten cases given in the previous and the present reports. The three ratios are called a nonlinear stress reduction coefficient, a nonlinear deflection reduction coefficient and an in-plane displacement coefficient, respectively. By multiplying these coefficients by the linear solutions or the thickness of the plates, we can calculate the maximum stress and displacements. Finally, it is concluded that the reduction of the maximum stress is smaller than that of the maximum deflection when the out of plane displacements are of the same order as the plate thickness.
- 1990-06-25
論文 | ランダム
- 平成10年度第31回数学教育論文発表会の報告
- 数学の学力をどう考え,どう維持するか (新指導要領に想う)
- インドネシアの数学教育(これからの科学教育 : 理科教育, 数学教育, 技術教育などとの関わり)
- 「個人差への対応」についての史的考察
- 1-6 進んでいる子を配慮した・数学指導についての研究