集中荷重を受ける帶状物体の応力について
スポンサーリンク
概要
- 論文の詳細を見る
The object of this paper is to find a solution for the two-dimentional problem of a strip plate under a concentrated traction acting on one straight edge. By the transfomation z=tanh (πw/2t), where z=x+iy and w=φ+iψ, the strip between ψ=0 and ψ=t is conformally represented upon the half-plane y>0. In the case where a single force P acts at the origin in the (x, y) plane in the positive direction of the axis of y, the solution is given by the following equation : [numerical formula] where Δ is the "dilatation", ω is the "rotation". Transforming to (φ, ψ) plane, and by means of the equation [numerical formula] we find [numerical formula] from this equation displacements in the (φ, ψ) plane can be obtained as follows : [numerical formula] where the function "f" is the "plane harmonic function". Determining [numerical formula] we can easily calculate the stresses in a strip of width "t" subjected to a single force 2t/π・P at the origin in the positive direction of the ψ-axis, and normally distributed pressure of amount P/{1+cosh(πφ/t)} per unit length on the edge ψ=t.
- 一般社団法人日本機械学会の論文
- 1954-03-25
著者
関連論文
- 接触面の変形, 損傷および漏えいに関する調査研究分科会報告
- 圧延機作動ロールの応力の二次元的解析
- 圧延機作動ロールの応力の二次元的解析
- だ円形領域内に等分布荷重を受ける半無限体表面の変位について
- だ円形領域内に等分布荷重を受ける半無限体表面の変位について
- ロールに生ずる応力の二次元的考察
- ロールに生ずる応力の二次元的考察
- 集中荷重を受ける帶状物体の応力について
- 集中荷重を受ける帯状物体の応力について