Detection of Chromatin-bound PCNA in Mammalian Cells and Its Use to Study DNA Excision Repair
スポンサーリンク
概要
- 論文の詳細を見る
Compelling evidence indicates that proliferating cell nuclear antigen (PCNA) is an indispensable factor not only in DNA replication but in nucleotide excision repair (NER), alternative pathway of base excision repair (BER), and mismatch repair. The common function of PCNA in each of these is to assist in the initiation of DNA synthesis by providing a scaffolding clamp as a trimer catalyzed by RF-C at the 3'-OH terminus of a nascent DNA strand, to which DNA polymerase δor ε can bind. Interestingly, DNA synthesis is reported to be ingeniously inhibited in replication, but not in NER owing to the interaction with CDKN1A (formerly known as p21/WAF1/CIP1). Furthermore, several proteins, XPG, FEN1, and DNA ligase I, recently were shown to competitively bind to the same region of PCNA, the interdomain connector loop, to which DNA polymerase δ or ε also binds. PCNA therefore seems to have a regulatory role in these DNA transactions. The in vitro reconstituted experimental system has been a powerful tool to obtain these lines of evidence, but another approach, immunofluorescence studies, also has been a contributor. In fact, the involvement of PCNA in DNA replication, NER, and BER has for the first time been indicated by a unique method that makes visible only in vivo chromatin-bound PCNA. The usefulness of this method and the importance of cooperative studies done with in vitro and in vivo experimental systems is discussed in terms of DNA excision repair.
論文 | ランダム
- 特集のねらい(手術関連機器の開発と新しい技術)
- 特集のねらい
- 吸着剤利用調湿調温デバイスの進化
- 日本熱物性学会の今後の展開に向けて
- 8・1・2 熱力学・熱物性(8・1 伝熱および熱力学,8.熱工学,機械工学年鑑)