破面のエネルギー : レオロジー一般
スポンサーリンク
概要
- 論文の詳細を見る
One can easily solve the differential equations for viscoelastic materials <∂ε>/<∂ε>=<σ_0>/η and cρ<∂θ>/<∂t>=<ασ_0>/<Jη> <∂ε>/<∂t>+k<∂^2θ>/<∂χ^2> simultaneously with the initial condition of the temperature rise (χ)= <q_0>/<2π>∫^∞_<-∞> exp(iωχ)dω in such the simplest case that σ_0 is a constant tensile stress and 1/η is approximated by a linear function of temperature increase, θ. The first term in the right-hand side of the second equation, representing the heat source, is derived form the work done by the stress per unit of volume per unit time. α is a factor less than (but differing little from ) unity and J the mechanical equivalent of heat. Our object in solving the equations is this : linear polymer may increase in temperature by some chance in the neighbourhood of a certain section of the material before break and the coefficient of viscosity may decrease there. It facilitates the subsequent extension of the same part, and finally leads to melting and then to breaking. We have good reason for the existence of the pattern of such an origin among several fracture patterns appearing on the fracture surface. Thus, the fracture energy is expected to be estimated as the work done on the fracture surface layer of finite depth subjected to large local flow, and obtained as W_B=<Jcρ>/α χ_Bθ_B, where χ_B and θ_B are the thickness of fracture surface and the mean temperature rise there respectively. This approach is regarded as worthy of further consideration, because of the identity of the order of magnitude of the calculated energy with those of the current data and because of the deduced reasonable relationships between the depth of the fracture surface and the thermal properties of the materials, the temperature dependency of the coefficient of viscosity and the acting stress.
- 社団法人日本材料学会の論文
- 1960-04-15
著者
関連論文
- 2-7 圧延ポリカーボネートの片振り引張り疲労
- 炭素鋼の回転曲げ疲れ発熱と切欠き係数の算定
- PMMAの破断強度と応力集中係数に及ぼす伸長速度の影響
- 垂直異方弾性体の環状き裂拡大の応力
- 垂直異方弾性体の環状き裂拡大の応力
- ポリメタクリル酸メチルのひずみ複屈折とひずみ速度と応力速度
- ポリメタクリル酸メチルの破断に至までの引張りひずみによる偏光度減少と散乱増加異常
- PMMA段付き試験片のやや高速引張速度における破断強度と応力集中係数
- 段付き試験片(ポリメタクリル酸メチル)の引張強度
- クラフト紙の強さ
- 破面のエネルギー : レオロジー一般
- 成型ベークライト曲げ試験片の残留応力
- 疲労による発熱のレオロジー的解釈 : ポリカーボネートの場合
- 破壊の材料通有性と特異性