2-knotに沿うGluck Surgeryと$\mathbf{R}P^2$-knot Exteriorの貼り合わせ : GLUCK SURGERY ALONG A 2-SPHERE IN A 4-MANIFOLD IS REALIZED BY SURGERY ALONG A PROJECTIVE PLANE (局所的及び大域的特異点論の研究)
スポンサーリンク
概要
著者
-
佐伯 修
九州大学数理学研究院
-
山田 裕一
電気通信大学
-
佐伯 修
Faculty Of Mathematics Kyusyu University
-
山田 裕一
東京大学数理科学研究科
-
佐伯 修
広島大学理学部
-
寺垣内 政一
広島大学学校教育学部
-
片長 敦子
筑波大学数学系
-
寺垣内 政一
広島大学教育学部
関連論文
- SPECIAL GENERIC MAPS ON OPEN 4-MANIFOLDS (Singularity theory of smooth maps and related geometry)
- Special generic maps on open 4-manifolds (可微分写像の特異点論とそれに関連する幾何学--RIMS研究集会報告集)
- 格子から切り取った平面曲線とDehn手術の係数 (特異点論における新しい方法と対象)
- Surgery along a projective plane in a 4-manifold and $D_4$-singularity (Newton polyhedrons and Singularities)
- 2-knotに沿うGluck Surgeryと$\mathbf{R}P^2$-knot Exteriorの貼り合わせ : GLUCK SURGERY ALONG A 2-SPHERE IN A 4-MANIFOLD IS REALIZED BY SURGERY ALONG A PROJECTIVE PLANE (局所的及び大域的特異点論の研究)
- $E^N$にはめ込まれた多様体と平面との幾何的交点数(実特異点のトポロジーとその関連話題)
- ON THE NUMBER OF COMPLEX POINTS OF A SURFACE IN AN ALMOST COMPLEX 4-MANIFOLD
- COBORDISM OF MORSE MAPS AND ITS APPLICATION TO MAP GERMS (The second Japanese-Australian Workshop on Real and Complex Singularities)
- Morse functions with sphere fibers(Singularities and o-minimal category)
- Self-intersection set of a generic map and a characterization of embeddings
- On the number of pyramids of a generic space curve(Geometric aspects of real singularities)
- SIMPLE STABLE MAPS OF 3-MANIFOLDS INTO SURFACES(Real Singularities and Real Algebraic Geometry)
- THEORY OF SUPER-ISOLATED SINGULARITIES AND ITS APPLICATIONS
- Decomposable な algebraic 3-knots の存在(Analytic Varieties および Stratified spaces における諸問題)
- Decomposableな algebraic 3-knot の存在(低次元トポロジーの幾何と代数)
- LENS SPACE SURGERIES ALONG TWO COMPONENT LINKS AND REIDEMEISTER-TURAEV TORSION (Twisted topological invariants and topology of low-dimensional manifolds)
- REDUCING DEHN FILLINGS AND $x$-FACES (On Heegaard Splittings and Dehn surgeries of 3-manifolds, and topics related to them)
- Composite knots trivialized by twists
- Twisting and Rolling
- Open books on 5-dimensional manifolds
- 微分可能写像の大域的特異点理論の現状と展望