A Study of the Power Law Resistance in a Fibonacci Lattice
スポンサーリンク
概要
- 論文の詳細を見る
The power law with respect to length n is studied numerically in detail mainly forthe resistance ran, 7') (A: energy) averaged over subsystems (denoted by ( >.) of sizen of a Fibonacci lattice,<.r(n, A)).c(n"""' exp {7l?(A)n}. Tlte Lyapunov exponentB(E) and the mean value (< >,) of the exponent of power ft.(E, /) have a fractalstructure with respect to energy which corresponds to that of the energy spectrum.Both are energy sensitive. The possibility of finding a power law in conductivity withrespect to temperature (at low temperatures) is discussed in view of a stability of boththe mean value of the exponent of power<,p.(E, /)>, and the exponent of powerp.(E, n, co) for each sample co over an energy interval k.T.[power law, Fibonacci lattice, quasi crystal, singular continuous spectrum, lj transport property, Landauer formula, conduct,ance fluctuationl
- 社団法人日本物理学会の論文
- 1989-06-15
著者
-
GODA Masaki
Faculty of Engineering, Niigata University
-
Goda Masaki
Faculty Of Engeneering Niigata University
-
KUBO Haruhiko
Graduate School of Science and Technology,Niigata University
-
Kubo Haruhiko
Graduate School Of Science And Technology Niigata University
関連論文
- Anomalous Size Dependence of Inverse Participation Ratio of Eigenfunctions in Graded Elastic Lattices(Condensed matter: structure and mechanical and thermal properties)
- Flat-Band Localization in Weakly Disordered System(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- A Family of Fibonacci Lattices. II
- Band Gap of Disordered Binary Alloys with Off-Diagonal Disorder : Repulsive Effect between Bands
- Scaling of Quantum Diffusion in One-Dimensional Disordered Systems
- Numerical Study of a Universal Distribution and Non-Universal Distributions of Resistance and Transmission Coefficient in 1-D Disordered Systems
- On a Random System Which Reveals Anomalous Localization of Wave Functions : Progress Letters
- A New Class of Disordered Systems : A Modified Bernoulli System with Long-Range Structural Correlation
- Localization of Eigenstates in One-Dimensional Disordered Systems
- Electronic States of Disordered Binary Alloys with Strong Off-Diagonal Disorder
- Statistical Properties of Electrical Resistance in a Both-Infinite Fibonacci Lattice
- Three-dimensional Flat-Band Models(Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)
- Flat Bands of a Tight-Binding Electronic System with Hexagonal Structure
- 記号創成に基くニューラルネット様生物機械の創成:遺伝暗号およびその他の記号システムの起源と進化についての統一理論の構築
- Neural-Network-like Biomachinogenesis via Semeiogenesis: Origin of Genetic Codes and Other Semeiotic Systems (数理モデル化と問題解決 研究報告)
- Response Function and Conductance of a Fibonacci Lattice
- Statistics of Scattering Wave Functions in the Fibonacci Lattice
- Coarse-Grained Quantities and Local Environment Effects in Disordered Systems. II : A Refined Effective Distance : Condensed Matter and Statistical Physics
- A Study of the Power Law Resistance in a Fibonacci Lattice
- Coarse-Grained Quantities and Local Environment Effects in Disordered Systems
- Collective Excitations in Liquid Lead
- A Family of Fibonacci Lattices
- Localization of Eigenstates in One-Dimensional Infinite Disordered Systems with Off-Diagonal Randomness
- Three-dimensional Flat-Band Models(Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)