Mobius Symmetry of Discrete Time Soliton Equations
スポンサーリンク
概要
- 論文の詳細を見る
We have proposed, in our previous papers [Y. Narita et al. : J. Phys. Sue. Jpn. 70 (2001) 1246; S. Saito et al. : J. Phys. Soc. Jpn. 70 (2001) 3517], a method to characterize integrahle discrete soliton equations. In this paper we generalize the method further and obtain a (q-difference Toda equation, from which we can derive various q-difference soliton equations by reductions.
- 社団法人日本物理学会の論文
- 2003-02-15
著者
-
YAMAMOTO Jun-ichi
Department of Psychology, Keio University
-
Yamamoto J
Department Of Physics Tokyo Metropolitan University
-
Yamamoto Jun-ichi
Department Of Physics Tokyo Metropolitan University
関連論文
- How can cognitive and learning science contribute to implementing e-learning in Japanese schools? (特集 学校教育と認知科学)
- Nambu-Hamiltonian Flows Associated with Discrete Maps (General)
- A Characterization of Discrete Time Soliton Equations
- Mobius Symmetry of Discrete Time Soliton Equations
- A Characterization of Discrete Time Soliton Equations