多次元アルファ係数を用いた作文評価構造抽出
スポンサーリンク
概要
- 論文の詳細を見る
When we abstract the structure of three-way essay evaluation data, the aggregated matrix tends to show more unidimensional feature than that of each rater if the equal weights are used. Multidimensional Alpha Coefficient (MAC) proposed by Yanai (1994) gives independent sets of scoring weights which vary dimensionality of the aggregated matrices. The present study tried to extract the evaluation structure from three-way essay data by using the method for preservation of the original multidimensionality. The essay data of Taira (1995) evaluated by seven raters were used. Some criteria, including the factor analysis with Procrustes rotation method, were set to choose the most suitable weights. The result showed that the weights for the sixth solution of MAC was regarded as the best. The aggregated matrix yielded three factors, consisting of one more dimension compared with the former analysis. The revised path diagram showed much clearer causal relationships. The emotional factors on writing and reading had an effect on the ability of story making, whereas Writing Habits influenced only upon the Loyalty to the Task Condition.
- 1998-03-30
論文 | ランダム
- 既存鉄筋コンクリ-ト造建築物の耐震性--主要な耐震性評価法の1次診断の適用例
- 既存鉄筋コンクリート造庁舎の耐震性能について : その1・主要な耐震性評価法の1次診断法の適用結果
- コンクリート充填角形鋼管柱とH形鋼はりの接合部に関する実験的研究 その3 接合部パネルの変形性状と耐力について : 構造系
- 「松本まるごと博物館」が目指すもの (特集 ITで育む地域文化--地域文化の振興を目指す各団体の多彩なIT活用)
- 耳科手術 : どこまで危険部位に迫れるか : 顔面神経の処理