Poincare functions of point sets in projective spaces a computer experiment
スポンサーリンク
概要
- 論文の詳細を見る
Let $ s $ and $ m( \geqq s + 2 ) $ be two natural numbers, and $ X_{s,m} $ be the space of $ m-point $ sets in the $ (s - 1) $-dimensional complex projective space. We give algorithms to find the Poincare functions of the space $ X_{s,m} $ equipped with the natural projective structure, and determine them for small $ s $ and $ m $. The results for $ (s, m) = (3, 7), (3, 8), (3, 9), (4, 8) $ are new.
- 九州大学の論文
著者
-
Niki Naoto
Faculty Of Engineering Tokyo University Of Science
-
Niki Naoto
Faculty Of Science Kyushu University
-
YOSHIDA Masaaki
Faculty of Mathematics Kyushu University
-
Yoshida Masaaki
Faculty Of Science Kyushu University
関連論文
- Hyperbolic Schwarz map of the confluent hypergeometric differential equation
- Poincare functions of point sets in projective spaces a computer experiment
- NUMERICAL COMPUTATION ON DISTRIBUTIONS OF THE LARGEST AND THE SMALLEST LATENT ROOTS OF THE WISHART MATRIX
- THE KYUSHU JOURNAL OF MATHEMATICS VOLUME 60