根の特性からみた栽培稲品種 : VI. 鉄被膜形成と三要素吸収
スポンサーリンク
概要
- 論文の詳細を見る
As is reported in the previous papers (1959 a & b), amounts of ferreous coatings in rice roots, both per plant and per unit surface area, increased up to the period of heading, having kept pace with the growth advance. In contrast to those changes, the relative growth rate of root weights dropped progressively. Amounts of ferreous coatings were also larger in those plants of which the root development was vigorous. Moreover, when roots were forced to age artificially, they produced much more coatings. In addition to these results, from the authors' determinations of the cation exchange capacity of roots of several varieties, it was made clear that the capacity was almost proportional to the amounts of ferreous coatinges. If the values of the capacity indicate the exchan geability of cations on root surface and the possibility of the absorption of those ions by roots, it may be suggested that the ferreous coating formation must be related to the nutritional uptake, including both anions and cations. In this investigation the authors tried to decide the relation mentioned above and to clarify the physiological significance for the ferreous coatings. Those varieties such as Norin 1, 41, 37 and 69 were planted without transplanting in paddy field of which soil is of sandy loam and of good drainage. Sampling was done every 15 days after planting, but at the harvest time it was conducted at the yellow meturation stage of each variety. In all samples the plant growth and contents of N, P and K were analysed and estimated in both top and underground parts. In the underground part, the ferreous coatings were quantitatively determined. Main results and some discussions concerned were as follows. 1) In each variety, ferreous coatings, total contents of the three elements and dry weights, respectively per plant, went upwards hand in hand as the growth advanced, until the period of heading (Fig. 1). Moreover throughout all stages of the growth and among all varieties used, the amounts of coatings were nearly proportional to the content of each element. These facts might be, however, interpreted as the accidental phenomena accompanying with the growth processes. Both factors such as the time and growth which affect the phenomena, must be therefore eliminated from those data obtained, inorder to make clear the relations among thern. 2) The time factor can be removed by caluculating those quantities per unit time, with such formulae as shown in Tab. 2. Fig. 2 shows the parallel relations among those per unit time. 3) This holds also for the elimination of the growth factor by calculating the relative rates of those quantities respectively. Formulae used for the calculations are also shown in Table 2. These relative rates changed quite parallely during the course of the growth (Fig. 3). Moreover the positive correlations between the rate of the coating formation and that of the absorption of each element were found (Fig. 4). Thus the anthors came to a conclusion that the ferreous coating formation was in a close connection with the nutritional uptake uptake and the plant growth. The ferreous coating formation may originate first from the oxidation of ferrous ions by roots at the interspace between roots and soils. Then the ferric ions may be exchanged and adsorbed on root surface to produce the coatings. The nutritional absorption may also be enhanced by the surface exchange and the oxidation in roots. Thus there may be some theoretical coincidence which justifies the experimental results. 4) Amounts of the ferreous coatings may be affected by the total root surface area at the time of the measurement and also by the integrated physiological activities favorable for the coating formation in roots. A formula such as Fe=A×∫f shows this connection. From this formula, 1/(Fe|A)=1/(∫f) is derived. This signifies that the reciprocal of the amounts of coatings per unit surface area becomes smaller when summed functions in roots increases. Thus
- 日本作物学会の論文
- 1961-01-20
著者
関連論文
- 水稲における側根形成に関する研究 : (V) 明暗条件と側根形成 (第142回講演会)
- 水稲における側根発生に関する研究 : (4) 異常条件における側根発生の特徴 (第140回講演会)
- 水稲における側根発生に関する研究 : (3) 地上, 地下部の明暗条件と側根発生 (第140回講演会)
- 水稲における側根発生に関する研究 : (II) 二三の異常条件下における側根発生
- 水稲における側根発生に関する研究 : (1) 栄養欠除条件における側根発生について
- 水稲根における側根発生に関する研究 : 2. 二三の異常条件下の側根発生について (第139回講演会)
- 水稲根の側根発生に関する研究 : (1) 栄養欠除条件における側根発生について (第138回講演会)
- 水稲葉表面におけるWax Coatingに関する研究 : (1) その密度の葉位による変化について (第137回 講演会)
- 水稲根の鉄皮膜形成に関する研究 : VI 根群の老化と鉄皮膜形成 (第137回 講演会)
- 水稲根の鉄皮膜形成に関する研究 : (V) 異常条件下における鉄皮膜形成
- 水稲根の鉄皮膜形成に関する研究 : V. 異常条件下における鉄皮膜形成について (第136回 講演会)
- 水稲根における鉄皮膜形成に関する研究 : IV. 二価鉄酸化力と鉄皮膜形成
- 異なる土壌温度における水稲根の生理生態 : 1. その生態について
- 水稲根における鉄被膜形式に関する研究 : IV 二価鉄酸化力と鉄被膜形成 (第134回 講演会)
- 根の特性からみた栽培稲品種 : VII. 根の量的形質に関する二三の考察
- 根の特性からみた栽培稲品種 : VII 根の量的形質に関する二三の考察 (第131回 講演会)
- 根の特性からみた栽培稲品種 : VI. 鉄被膜形成と三要素吸収
- 根の特性からみた栽培稲品種 : (V) 根中の燐と還元抵抗性
- 根の特性からみた栽培稲品種 : (IV) 鉄被膜形成と根の活力及び塩基置換容量
- 根の特性からみた栽培稲品種 : III. 根の鉄被膜量について
- 根の特性からみた栽培稲品種 : (I) 苗代放置稲の二三の生態について : (II) 根径, 発根その他の特性について
- 春播性程度を異にする小麦品種の生育に伴う葉カタラーゼの消長について
- 根の特性からみた栽培稲品種 : (第1報) 苗代放置稲の根と他形質との関連について (第115回 講演会)
- 春播性程度を異にした大小麦品種の幼苗の高温感応について
- 異なる地温及び土壌水分下に於ける甘藷の生育について
- 仏印産野生繊維植物ポロムポムについて
- 禾穀類の葉の気孔に関する一知見
- 棉の発根に於ける耐塩性の種間差異, 並に無機塩類の細胞内容に与へる影響に就て (第2報)
- 水稻種子カタラーゼ活力の品種間差異について
- 熱凝固反應による作物體の葉診斷 : その一 異つた肥料條件で栽培した水稻に關する實驗
- 小麥種子カタラーゼ活力の品種間差異 (豫報)
- 棉の發根に於ける耐鹽性の種間差異並に無機鹽類の細胞内容に與へる影響に就て (第1報)