ニューラルネットを用いたPCBの欠陥検出および分類に関する研究
スポンサーリンク
概要
- 論文の詳細を見る
We investigate the defect detection by making use of pre-made reference image data and classify the defects by using the artificial neural network. The approach is composed of three main parts. The first step consists of a proper generation of two references image data by using a low-level morphological technique. The second step proceeds by performing three times logical bit operations between two ready-made reference images and just captured image to be tested. In the third step, by extracting four features from each detected defect, followed by assigning them into the input nodes of an already trained artificial neural network we can obtain a defect class corresponding to the features. Experimental results show that proposed algorithms are found to be effective for flexible defect detection, robust classification and high-speed process by adopting a simple logic operation.
- 公益社団法人精密工学会の論文
- 2001-10-05
著者
関連論文
- ダイヤモンド触針のイオンビーム加工における最適条件
- ニューラルネットを用いたPCBの欠陥検出および分類に関する研究
- 光学特性を用いた印刷回路基板のパターン検査用照明装置の設計に関する研究
- 神経回路網を用いたPCBの欠陷分類アルゴリズムの開発
- 反射特性を用いたPCBのパターン檢査用の照明装置の設計に關する研究