Functional Method for the Off-Shell Dual Amplitudes
スポンサーリンク
概要
- 論文の詳細を見る
By adopting Corrigan and Fairlie's interpretation of the off-the-mass-shell states of Schwarz, we give a general framework to establish the dual amplitudes for off-shell particles in terms of purely functional-integral formalism. In our framework, the amplitudes with one-particle off-shell are derived, whose representation is of the Bardakci-Ruegg type, only when the number of effective dimensions is 24 and the intercept of the leading trajectory is one. There is an involved problem around the effective dimensionality (in connection with the integration measure), but the origin of magic number 16 of Schwarz is undiscovered.
- 理論物理学刊行会の論文
- 1977-11-25
著者
-
MINAMI Masatsugu
Research Institute for Mathematical Sciences Kyoto University
-
MINAMI Masatsugu
Research Institute for Mathematical Sciences, Kyoto University
関連論文
- Connection between the Absorptive Part of the Scattering Amplitude and That of the Feynman Integral Associated with the Tetrahedron Graph
- On the Polyakov Model for a Closed String : Particles and Fields
- One-Dimensional Toda Molecule. II : The Solutions Applied to Bogomolny Monopoles with Spherical Symmetry
- Canonical Coordinates Associated with the Perturbed SU(N+1) Toda Systems : Condensed Matter and Statistical Physics
- Note on Nahm's Partition Function of the Dual Spectrum. II
- Perturbed Liouville/Toda Systems : Condensed Matter and Statistical Physics
- Functional Method for the Off-Shell Dual Amplitudes
- Position-Space Analytic Functions Dual to the Feynman Integrals and Their Mass-Superpositions
- Position-Space Propagators and a Theory of Functional Fields Relevant to the Dual-Resonance Models
- Dirac's Monopole and the Hopf Map
- One-Dimensional Toda Molecule. I : General Solution
- Duality between the Feynman Integral and a Perturbation Term of the Wightman Function
- Note on Nahm's Partition Function of the Dual Spectrum
- Svensson Representation with Local Commutativity
- A Green's Function Method for Cremmer and Gervais' Vertex
- On the Proposition Given by T. T. Wu concerning the Exponential Decrease of the High-Energy Large-Angle Differential Cross Section
- Cancellation of the Singularities of the Backward Unequal-Mass Regge-Pole Terms
- Dual Amplitudes with Two Off-Shell Lines
- Vertex Functions at Large Momentum Transfer. I : Exponential Decrease of the Wu-Yang Type
- Vertex Functions at Large Momentum Transfer. III : Models for the Wu-Yang-Type Form Factor
- Representation of the Wightman Function in Terms of Two-Point Singular Functions
- The Landau Equations for a Continuous Medium and the Koba-Nielsen Kernels in the Generalized Veneziano Formula
- Reinterpretation of the Two-Dimensional Internal Space Associated with Dual-Resonance Models. I : Conformal-Spin Zero Case
- Reinterpretation of the Two-Dimensional Internal Space Associated with Dual-Resonance Models. II : Conformal-Spinor Case
- Functional Evaluation of the Dual Partition Functions : How Do We "Hear the Shape of a Drum" in Dual Models?
- Hopf Fibrations of the Sphere-Constraints in the Non-Linear σ Models
- Vertex Functions at Large Momentum Transfer. II : Inverse Fourth Power Decrease
- Dual-Resonance Amplitude as a Generalization of Feynman's Propagator
- Reciprocal Symmetries of the Dual-Resonance Propagators
- Functional Approach to the Critical Dimension in Veneziano's Model
- Plateau's Problem and the Virasoro Conditions in the Theory of Duality
- Quaternionic Gauge Fields on S^7 and Yang's SU(2) Monopole
- Towards a Satisfactory Invariant Measure of Dual-Resonance Amplitudes
- Modular Group and Non-Cyclic Symmetry of the Veneziano Formula