Reduced Description of the Confined Quasi-Reversible Ginzburg-Landau Equation
スポンサーリンク
概要
- 論文の詳細を見る
We study from the point of view of quasi-reversible instabilities the onset of chaos in the one-dimensional quasi-reversible Ginzburg-Landau equation with Neuman boundary conditions when the minimum wave number is close to the threshold of the Benjamin-Feir-Newell-Kuramoto instability.The system appears to be described by a Lorenz type model in which chaos arises in two different ways : the usual Lorenz homoclinic bifurcation and the cascade of gluing bifurcations.
- 2000-07-14
著者
-
Clerc M.
Institute Non Lineaire De Nice Umr 6618 Cnrs-unsa
-
COULLET P.
Institut Non Lineaire de Nice
-
TIRAPEGUI E
Institunt voor Theoretishe Fysica, Universiteit Leuven
-
Coullet P.
Institute Non Lineaire De Nice Umr 6618 Cnrs-unsa
-
Tirapegui E
Facultad De Ciencias Fisicas Y Mat. Depto.fisicas Univ.de Chile:centro De Fisica No Lineal Y Sistema
-
TIRAPEGUI E.
Facultad de Ciencias Fisicas y Mat., Depto.Fisicas, Univ.de Chile
-
CLERC M.
Institute Non Lineaire de Nice, UMR 6618 CNRS-UNSA
関連論文
- Reduced Description of the Confined Quasi-Reversible Ginzburg-Landau Equation
- Return Map for the Chaotic Dripping Faucet
- On the Perturbation Expansion for the Fokker-Planck Dynamics