The Third Quantization and Bilocal Lattice Fields
スポンサーリンク
概要
- 論文の詳細を見る
The 8-dimensional extended phase-space, the space of space-time-momentum-energy (q^1,…,q^4, p_1,…,p_4) is considered. The third quantization rule (which is the basic postulate of quantum mechanics [P_a, Q^b] =ih δ^b_aI) is put forward. The Hilbert space for the third quantization is chosen to be separable. The scalar field operators Φ(P, Q) and bispinor field operators ψ(P, Q) are supposed to satisfy respectively operator versions of Klein-Gordon-Yukawa and Boltzmann-Dirac-Yukawa equations. The expectation values of these operator equations yield in a natural way respectively the relativistic partial difference equations for bilocal lattice scalar and bilocal lattice bispinor fields.
- 理論物理学刊行会の論文
- 1983-12-25
著者
-
Das A
Simon Fraser Univ. British Columbia Can
-
DAS A.
Department of Mathematics, Simon Fraser University
-
Das A.
Department De Physique Theorique Universite De Geneve
-
DAS A.
Department of Mathematics, Simon Fraser University:Institute of Theoretical Sciences, S. F. U.
関連論文
- Evidence of L1_0 Type Ordered Structure at an Equiatomic Composition PtCr
- The Third Quantization and Bilocal Lattice Fields
- Helminthosporium sativumの培養ろ液がコムギ苗に及ぼす刺激的, 保護的効果
- Spherical Gravitating Systems of Arbitrary Dimension
- Density Matrix Approach to Knight Shift : Use of a Model Pseudopotential
- A Relativistic Partial Difference Equation for Bilocal Lattice Meson Fields
- The Third Quantization and Bilocal Lattice Fields
- A Relativistic Partial Difference Equation for Bilocal Lattice Fermion Fields