Cycle Expansions for Intermittent Maps
スポンサーリンク
概要
- 論文の詳細を見る
In a generic dynamical system chaos and regular motion coexist side by side, in different parts of the phase space. The border between these, where trajectories are neither unstable nor stable but of marginal stability, manifests itself through intermittency, dynamics where long periods of nearly regular motions are interrupted by irregular chaotic bursts. We discuss the Perron-Frobenius operator formalism for such systems, and show by means of a 1-dimensional intermittent map that intermittency induces branch cuts in dynamical zeta functions. Marginality leads to long-time dynamical correlations, in contrast to the exponentially fast decorrelations of purely chaotic dynamics. We apply the periodic orbit theory to quantitative characterization of the associated power-law decays.
- 理論物理学刊行会の論文
- 2003-09-30
著者
-
Tanner G
Quantum Information Processing Group Hewlett-packard Laboratories
-
ARTUSO Roberto
Dipartimento di Scienze Chimiche, Fisiche e Matematiche, Universita dell'Insubria and I.N.F.M.
-
CVITANOVIC Predrag
Center for Nonlinear Science, School of Physics, Georgia Institute of Technology
-
TANNER Gregor
Quantum Information Processing Group, Hewlett-Packard Laboratories
-
Artuso Roberto
Dipartimento Di Scienze Chimiche Fisiche E Matematiche Universita Dell'insubria And I. N. F. M.
-
Cvitanovic Predrag
Center For Nonlinear Science School Of Physics Georgia Institute Of Technology
-
ARTUSO Roberto
Dipartimento di Scienze Chimiche, Fisiche e Matematiche, Universita dell'Insubria and I.N.F.M.
関連論文
- Cycle Expansions for Intermittent Maps
- Cycle Expansions for Intermittent Maps
- Semiclassical Approach to Few-Body Problems : The Helium Atom