FUSION OF MULTI-DIMENSIONAL POSSIBILISTIC INFORMATION VIA POSSIBILISTIC LINEAR PROGRAMMING
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, multi-source possibilistic information is represented by a set of possibilistic constraints to characterize decision variables from different information aspects. Possibilistic linear programming is used to integrate multi-source possibilistic information into the upper and the lower possibility distributions of decision vector.
著者
-
Guo P
Kagawa University
-
TANAKA Hideo
Toyohashi Sozo College
-
GUO Peijun
Kagawa University
-
Entani Tomoe
Osaka Prefecture University
関連論文
- FUSION OF MULTI-DIMENSIONAL POSSIBILISTIC INFORMATION VIA POSSIBILISTIC LINEAR PROGRAMMING
- Identification of Upper and Lower Possibility Distributions with Rough Sets (第17回ファジィシステムシンポジウム--科学技術と自然の調和を目指して)