On the construction of smooth SL(m, H) × SL(n, H)-actions on S^<4(m+n)-1>
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we shall constract some smooth SL(m, H)×SL(n, H)-actions on (4m+4n-1)-sphere S^. To constract such an action, we use an R^2-action on S^7. This idea was introduced by F.Uchida [5].
- 山形大学の論文
- 2003-02-17
著者
-
黒木 慎太郎
Department Of Mathematical Sciences Korean Advanced Institute Of Science And Technology (kaist)
-
Kuroki Shintaro
Department Of Mechanical Engineering Nagaoka University Of Technology
関連論文
- ハイパートーラスグラフとその同変コホモロジー(変換群論の手法)
- Robust H_∞ DIA Control of Levitated Steel Plates
- トーラス多様体上の変換群について(特異点論とオーミニマルカテゴリー)
- Equivariant cohomology determines hypertoric manifold (変換群論の新たな展開--RIMS研究集会報告集)
- On 8-manifolds with SU(3)-actions (変換群の理論とその応用--RIMS研究集会報告集)
- On the SL(3,$\mathbf{R}$) action on 4-sphere (Transformation Group Theory and Surgery)
- Classification of compact transformation groups on complex quadric with codimension one orbits (Topological Transformation Groups and Related Topics)
- On the construction of smooth SL(m, H) × SL(n, H)-actions on S^