Fibrewise Hopf Construction and Hoo Formula for Pairings
スポンサーリンク
概要
- 論文の詳細を見る
Let Γ be a fibrewise co-Hopf space over a topological space <I>B</I>. A Γ<SUB><I>B</I></SUB>-suspension space Γ<SUB><I>B</I></SUB><I>X</I> is a generalization of a fibrewise suspension space Σ<SUB><I>B</I></SUB><I>X</I> for any fibrewise pointed space <I>X</I> over <I>B</I>. Making use of Γ<SUB><I>B</I></SUB>-suspension space, we define Γ<SUB><I>B</I></SUB>-Hopf construction and prove a Γ<SUB><I>B</I></SUB>-suspension formula which generalizes the suspension formula of C. S. Hoo. The dual formula is also proved.
- 京都大学の論文
著者
関連論文
- Composition properties of box brackets
- SOME CLASSICAL AND MATRIX TODA BRACKETS IN THE 13- AND 15-STEMS
- Network Assisted Questionnaire on Physical and Psychological Health of Computer Users
- Pairings in Categories
- Equivariant Phantom Maps : Dedicated to Professor Hiroshi Toda on his 60th birthday
- On the McGIbbon and Neisendorfer theorem resolving the Serre conjecture
- Pairings and Copairings in the Category of Topological Spaces
- Fibrewise Decomposition of Generalized Suspension Spaces and Loop Spaces
- Homotopical Presentations and Calculations of Algebraic $K_0$-Groups for Rings of Continuous Functions
- Deterioration of baroreceptor reflex by transient global cerebral ischemia in dogs.
- Fibrewise Hopf Construction and Hoo Formula for Pairings