Focusing of spherical nonlinear pulses in R^{1+3}, III. Sub and supercritical cases
スポンサーリンク
概要
- 論文の詳細を見る
We study the validity of geometric optics in $L^\infty$ for nonlinear wave equations in three space dimensions whose solutions, pulse like, focus at a point. If the amplitude of the initial data is subcritical, then no nonlinear effect occurs at leading order. If the amplitude of the initial data is sufficiently big, then strong nonlinear effects occur; we study the cases where the equation is either dissipative or accretive. When the equation is dissipative, pulses are absorbed before reaching the focal point. When the equation is accretive, the family of pulses becomes unbounded.
- 東北大学の論文
著者
-
Rauch Jeffrey
Department Of Mathematics University Of Michigan
-
Carles Remi
Institut de Recherche en Mathematiques de Rennes (IRMAR), UMR 6625 CNRS, Universite de Rennes 1
-
Carles Remi
Institut De Recherche En Mathematiques De Rennes (irmar) Umr 6625 Cnrs Universite De Rennes 1