多変数系のある最良推定問題について
スポンサーリンク
概要
- 論文の詳細を見る
In the past several years, many papers have been written about optimum control of a dynamic system utilizing the computers fully. This report is concerned with the optimum control ploblem of the multivariable processes with inaccessible state variables for measurement and observation. The process dynamics is characterized by the state-transition equation in discrete form x(k+1)-φ(k)x(k)+G(k)m(k)+u(k) where x, m, u, φ and G are as follows : x=n×1 state vector m=r×1 control vector u=n×1 disturbance vector with zero mean φ=n×n matrix G=n×r matrix The measurable output variables are related to the state variables, the control signals and the random measurement noise w(k) which has zero mean, as follows : y(k)=M^1x(k)+M^2m(k)+w(k) In the optimum system design, the performance index is quadratic performance index of the following form Σ^^N__<k=1> 〔x^T(k)Q(k)x(k)+λm^T(k-1)H(k-1)m(k-1)〕 where Q and H are positive definite matrixes and T denotes the transpose of a matrix. Optimum estimation and optimum control must be considered in the design of control systems with inaccessible state variables. The report pays more attention to the ploblem of the optimum estimation. The obtained best estimate of x(k) is shown in Fig.1 and Fig.2 by the blockdiagram, and the flow chart to calculate the conversion matrix A^0 is illustrated in Fig.3. Optimum estimation of x(k) requires the control vector estimated at the previous sampling instant as an input, as well as the output vector measured at the same sampling instant and obtained from calculating the feedback vector B and the conversion matrix A^0.
- 山口大学の論文
著者
関連論文
- レーザ・ノンインパクト・プリンタへの濃淡画像印刷に関する一考察
- バックラッシュのある二次元制御系の有限整定時間応答
- ブロック対角化による分散型推定器
- 雑音に汚された入出力データからのシステム同定
- スムーサによるパラメータ推定
- 状態推定理論による伝達関数の推定
- 未知時変駆動行列の推定とその学習制御への応用(続報)
- 未知時変駆動行列の推定とその学習制御への応用
- 非線形制御系の最小時間制御
- 多変数系のある最良推定問題について
- 不感帯要素のある2次離散値制御系の有限整定時間応答